Carbon Dioxide Photoreduction on the Bi2S3/MoS2 Catalyst
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physical Properties of Catalysts
2.2. Carbon Dioxide Photoreduction on Catalysts
2.3. Optical Properties of Bi2S3/MoS2 Catalysts
2.4. Catalytic Mechanism for 1Bi2S3/1MoS2
3. Materials and Methods
3.1. Preparation of Catalysts
3.2. Characterization
3.3. Photocatalytic Carbon Dioxide Conversion Reaction
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, Y.; Ajmal, S.; Zheng, X.; Zhang, L. Efficient nanomaterials for harvesting clean fuels from electrochemical and photoelectrochemical CO2 reduction. Sustain. Energy Fuels 2018, 2, 510–537. [Google Scholar] [CrossRef]
- Wang, L. Synthetic methods of CuS nanoparticles and their applications for imaging and cancer therapy. RSC Adv. 2016, 6, 82596–82615. [Google Scholar] [CrossRef]
- Alcaraz, L.; García-Díaz, I.; González, L.; Rabanal, M.E.; Urbieta, A.; Fernández, P.; López, F.A. New photocatalytic materials obtained from the recycling of alkaline and Zn/C spent batteries. J. Mater. Res. Technol. 2019, 8, 2809–2818. [Google Scholar] [CrossRef]
- Liu, B.; Xu, J.; Ran, S.; Wang, Z.; Chen, D.; Shen, G. High-performance photodetectors, photocatalysts, and gas sensors based on polyol reflux synthesized porous ZnO nanosheets. CrystEngComm 2012, 14, 4582–4588. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, Y.; Li, L.; Muhire, E.; Gao, M. High-performance photodetectors and enhanced photocatalysts of two-dimensional TiO2 nanosheets under UV light excitation. Nanoscale 2016, 8, 8170–8177. [Google Scholar] [CrossRef] [PubMed]
- Chava, R.K.; Do, J.Y.; Kang, M. Enhanced photoexcited carrier separation in CdS–SnS2 heteronanostructures: A new 1D–0D visible-light photocatalytic system for the hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 13614–13628. [Google Scholar] [CrossRef]
- Lee, G.; Wu, J.J. Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications—A review. Powder Technol. 2017, 318, 8–22. [Google Scholar] [CrossRef]
- Shown, I.; Samireddi, S.; Chang, Y.; Putikam, R.; Chang, P.; Sabbah, A.; Fu, F.; Chen, W.; Wu, C.; Yu, T.; et al. Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light. Nat. Commun. 2018, 9, 169. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, S.; Park, S.; Kang, M. A p-n heterojunction NiS-sensitized TiO2 photocatalytic system for efficient photoreduction of carbon dioxide to methane. Ceram. Int. 2017, 43, 1768–1774. [Google Scholar] [CrossRef]
- Kim, J.; Do, J.Y.; Park, N.; Lee, S.J.; Hong, J.; Kang, M. Photoreduction of CO2 into CH4 using Bi2S3-TiO2 double-layered dense films. Korean J. Chem. Eng. 2018, 35, 1089–1098. [Google Scholar] [CrossRef]
- Do, J.Y.; Chava, R.K.; Kim, S.K.; Nahm, K.; Park, N.; Hong, J.; Lee, S.J.; Kang, M. Fabrication of core@interface:shell structured CuS@CuInS2:In2S3 particles for highly efficient solar hydrogen production. Appl. Surf. Sci. 2018, 451, 86–98. [Google Scholar] [CrossRef]
- Sabarinathan, M.; Harish, S.; Archana, J.; Navaneethan, M.; Ikeda, H.; Hayakawa, Y. Highly efficient visible-light photocatalytic activity of MoS2–TiO2 mixtures hybrid photocatalyst and functional properties. RSC Adv. 2017, 7, 24754–24763. [Google Scholar] [CrossRef]
- Li, J.; Wu, N. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: A review. Catal. Sci. Technol. 2015, 5, 136–1384. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, W.; Xu, R.; Shi, Y.; Zhang, B. Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution. Chem. Commun. 2013, 49, 9803–9805. [Google Scholar] [CrossRef]
- Kumar, P.; Boukherroub, R.; Shankar, K. Sunlight-driven water-splitting using two-dimensional carbon based semiconductors. J. Mater. Chem. A 2018, 6, 12876–12931. [Google Scholar] [CrossRef]
- Weng, B.; Zhang, X.; Zhang, N.; Tang, Z.; Xu, Y. Two-Dimensional MoS2 Nanosheet-Coated Bi2S3 Discoids: Synthesis, Formation Mechanism, and Photocatalytic Application. Langmuir 2015, 31, 4314–4322. [Google Scholar] [CrossRef]
- Ke, J.; Liu, J.; Sun, H.; Zhang, H.; Duan, X.; Liang, P.; Li, X.; Tade, M.O.; Liu, S.; Wang, S. Facile assembly of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water oxidation and pollutant degradation. Appl. Catal. B Environ. 2017, 200, 47–55. [Google Scholar] [CrossRef]
- Liang, N.; Zai, J.; Xu, M.; Zhu, Q.; Wei, X.; Qian, X. Novel Bi2S3/Bi2O2CO3 heterojunction photocatalysts with enhanced visible light responsive activity and wastewater treatment. J. Mater. Chem. A 2014, 2, 4208–4216. [Google Scholar] [CrossRef]
- Tsai, C.; Li, H.; Park, S.; Park, J.; Han, H.S.; Nørskov, J.K.; Zheng, X.; Abild-Pedersen, F. Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nat. Commun. 2017, 8, 15113–15121. [Google Scholar] [CrossRef]
- Dashtian, K.; Porhemat, S.; Rezvani, A.R.; Ghaedi, M.; Sabzehmeidani, M.M. Adsorption of semisoft pollutants onto Bi2S3/Ag2S-AC under the influence of ultrasonic waves as external filed. J. Ind. Eng. Chem. 2018, 60, 390–400. [Google Scholar] [CrossRef]
- Cheah, A.J.; Chiu, W.S.; Khiew, P.S.; Nakajima, H.; Saisopa, T.; Songsiriritthigul, P.; Radiman, S.; Hamid, M.A.A. Facile synthesis of a Ag/MoS2 nanocomposite photocatalyst for enhanced visible-light driven hydrogen gas evolution. Catal. Sci. Technol. 2015, 5, 4133–4143. [Google Scholar] [CrossRef]
- Wang, F.Z.; Zheng, M.J.; Zhang, B.; Zhu, C.Q.; Li, L.; Ma, L.; Shen, W.Z. Ammonia intercalated flower-like MoS2 nanosheet film as electrocatalyst for high efficient and stable hydrogen evolution. Sci. Rep. 2016, 6, 31092. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yu, X.; Yu, H.; Chen, Y.; Gao, P.; Li, C.; Zhu, C. Growth of Ultrathin MoS2 Nanosheets with Expanded Spacing of (002) Plane on Carbon Nanotubes for High-Performance Sodium-Ion Battery Anodes. ACS Appl. Mater. Interfaces 2014, 6, 21880–21885. [Google Scholar] [CrossRef] [PubMed]
- Holzwarth, U.; Gibson, N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotechnol. 2011, 6, 534–1534. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Si, M.; Li, J.; Zhang, J.; Zhang, Z.; Yang, Z.; Xue, D. Ferromagnetism in freestanding MoS2 nanosheets. Nanoscale Res. Lett. 2013, 8, 129. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Jia, J.; Yang, Z.; Yu, J.; Wang, A.; Sang, Y.; Zhou, W.; Liu, H. One-step synthesis of CdS nanoparticles/MoS2 nanosheets heterostructure on porous molybdenum sheet for enhanced photocatalytic H2 evolution. Appl. Catal. B Environ. 2017, 210, 290–296. [Google Scholar] [CrossRef]
- Kondekar, N.P.; Boebinger, M.G.; Woods, E.V.; McDowell, M.T. In situ XPS investigation of transformations at crystallographically oriented MoS2 interfaces. ACS Appl. Mater. Interfaces 2017, 9, 32394–32404. [Google Scholar] [CrossRef]
- Kwok, K.M.; Ong, S.W.D.; Chen, L.; Zeng, H.C. Constrained growth of MoS2 nanosheets within a mesoporous silica shell and its effects on defect sites and catalyst stability for H2S decomposition. ACS Catal. 2018, 8, 714–724. [Google Scholar] [CrossRef]
- Bhoi, Y.P.; Behera, C.; Majhi, D.; Equeenuddin, S.M.; Mishra, B.G. Visible light-assisted photocatalytic mineralization of diuron pesticide using novel type II CuS/Bi2W2O9 heterojunctions with a hierarchical microspherical structure. New J. Chem. 2018, 42, 281–292. [Google Scholar] [CrossRef]
- Ji, Y.; Luo, Y. Theoretical study on the mechanism of photoreduction of CO2 to CH4 on the anatase TiO2(101) surface. ACS Catal. 2016, 6, 2018–2025. [Google Scholar] [CrossRef]
- Patil, S.A.; Hwang, Y.; Jadhav, V.V.; Kim, H.; Kim, K.H. Solution processed growth and photoelectrochemistry of Bi2S3 nanorods thin film. J. Photochem. Photobiol. A 2017, 332, 174–181. [Google Scholar] [CrossRef]
- D’Amato, C.A.; Giovannetti, R.; Zannotti, M.; Rommozzi, E.; Ferraro, S.; Seghetti, C.; Minicucci, M.; Gunnella, R.; Cicco, A.D. Enhancement of visible-light photoactivity by polypropylene coated plasmonic Au/TiO2 for dye degradation in water solution. Appl. Surf. Sci. 2018, 441, 575–587. [Google Scholar] [CrossRef]
- Do, J.Y.; Chava, R.K.; Mandari, K.K.; Park, N.; Ryu, H.; Seo, M.W.; Lee, D.; Senthil, T.S.; Kang, M. Selective methane production from visible-light-driven photocatalytic carbon dioxide reduction using the surface plasmon resonance effect of superfine silver nanoparticles anchored on lithium titanium dioxide nanocubes (Ag@LixTiO2). Appl. Catal. B Environ. 2018, 237, 895–910. [Google Scholar] [CrossRef]
- Park, M.; Kwak, B.S.; Jo, S.W.; Kang, M. Effective CH4 production from CO2 photoreduction using TiO2/xmol% Cu–TiO2 double-layered films. Energy Convers. Manag. 2015, 103, 431–438. [Google Scholar] [CrossRef]
- Barakat, N.A.M.; Kanjwal, M.A.; Chronakis, I.S.; Kim, H.Y. Influence of temperature on the photodegradation process using Ag-doped TiO2 nanostructures: Negative impact with the nanofibers. J. Mol. Catal. A Chem. 2013, 366, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.H.; Han, W.D.; Hong, Y.J.; Yu, J.G. Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal. Today 2009, 148, 335–340. [Google Scholar] [CrossRef]
- Nogueira, A.E.; Oliveira, J.A.; Silva, G.T.S.T.; Ribeiro, C. Insights into the role of CuO in the CO2 photoreduction process. Sci. Rep. 2019, 9, 1316. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, R.; Kim, J.; Do, J.Y.; Seo, M.W.; Kang, M. Carbon Dioxide Photoreduction on the Bi2S3/MoS2 Catalyst. Catalysts 2019, 9, 998. https://doi.org/10.3390/catal9120998
Kim R, Kim J, Do JY, Seo MW, Kang M. Carbon Dioxide Photoreduction on the Bi2S3/MoS2 Catalyst. Catalysts. 2019; 9(12):998. https://doi.org/10.3390/catal9120998
Chicago/Turabian StyleKim, Raeyeong, Junyeong Kim, Jeong Yeon Do, Myung Won Seo, and Misook Kang. 2019. "Carbon Dioxide Photoreduction on the Bi2S3/MoS2 Catalyst" Catalysts 9, no. 12: 998. https://doi.org/10.3390/catal9120998
APA StyleKim, R., Kim, J., Do, J. Y., Seo, M. W., & Kang, M. (2019). Carbon Dioxide Photoreduction on the Bi2S3/MoS2 Catalyst. Catalysts, 9(12), 998. https://doi.org/10.3390/catal9120998