Pure, Size Tunable ZnO Nanocrystals Assembled into Large Area PMMA Layer as Efficient Catalyst
Abstract
:1. Introduction
2. Results
2.1. Optimisation of Synthesis
2.1.1. Synthesis Time
2.1.2. Synthesis Temperature
2.2. Structural Properties
2.3. Optical Properties
2.3.1. Photoluminescence Measurements
2.3.2. Photocatalytic Properties
- Without and with annealing at 80 °C, ~9% (0.36 mg ZnO/4 mg) of ZnO nanostructures are present in the powder sample.
- Annealing at 80 to 250 °C, ZnO percentage increased from 10% (0.4 mg ZnO/4 mg) to ~99% (3.96 mg ZnO/4 mg).
- From 250 to 800 °C, ZnO percentage reached 100% (4 mg ZnO/4 mg) and remains constant.
2.3.3. Large Area Layer of ZnO NP
3. Materials and Methods
3.1. Fabrication of ZnO NC
3.2. Self-Assembly of ZnO Nanostructures into Nanoporous PMMA Layer
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Wang, Y.; Herron, N. Quantum size effects on the exciton energy of CdS clusters. Phys. Rev. B 1990, 42, 7253. [Google Scholar] [CrossRef]
- Nanda, J.; Kuruvilla, B.A.; Sarma, D.D. Photoelectron spectroscopic study of CdS nanocrystallites. Phys. Rev. B 1999, 59, 7473. [Google Scholar] [CrossRef]
- Brus, L.E. Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409. [Google Scholar] [CrossRef]
- Sapra, S.; Sarma, D.D. Evolution of the electronic structure with size in II-VI semiconductor nanocrystals. Phys. Rev. B 2004, 69, 125304. [Google Scholar] [CrossRef]
- Mishra, S.K.; Srivastava, R.K.; Prakash, S.G.; Yadav, R.S.; Panday, A.C. Photoluminescence and photoconductive characteristics of hydrothermally synthesized ZnO nanoparticles. Opto-Electron. Rev. 2010, 18, 467–473. [Google Scholar] [CrossRef]
- Gouvea, C.A.; Wypych, F.; Moraes, S.G.; Duran, N.; Nagata, N.; Peralta-Zamora, P. Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution. Chemosphere 2000, 40, 433–440. [Google Scholar] [CrossRef]
- Elseviers, W.F.; Verelst, H. Transition metal oxides for hot gas desulphurisation. Fuel 1999, 78, 601–612. [Google Scholar] [CrossRef]
- Alivisatos, A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933. [Google Scholar] [CrossRef]
- Kumar, Y.; Kumar, H.; Mukherjee, B.; Rawat, G.; Kumar, C.; Pal, B.N.; Jit, S. Visible-blind Au/ZnO quantum dots-based highly sensitive and spectrum selective Schottky photodiode. IEEE Trans. Electron. Devices 2017, 64, 2874–2880. [Google Scholar] [CrossRef]
- Schmidt-Mende, L.; MacManus-Driscoll, J.L. ZnO–nanostructures, defects, and devices. Mater. Today 2007, 10, 40–48. [Google Scholar] [CrossRef]
- Gupta, T.K. Application of zinc oxide varistors. J. Am. Ceram. Soc. 1990, 73, 1817–1840. [Google Scholar] [CrossRef]
- Look, D.C. Recent advances in ZnO materials and devices. Mater. Sci. Eng. B. 2001, 80, 383–387. [Google Scholar] [CrossRef]
- Djurišić, A.B.; Leung, Y.H. Optical properties of ZnO nanostructures. Small 2006, 2, 944–961. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.S.; Huang, C.H.; Huang, Y.Y.; Hou, Y.J.; Xie, P.H.; Zhang, B.W.; Cheng, H.M. A highly efficient solar cell made from a dye-modified ZnO-covered TiO2 nanoporous electrode. Chem. Mater. 2001, 13, 678–682. [Google Scholar] [CrossRef]
- Salman, M.S.; Riaz, A.; Iqbal, A.; Zulfiqar, S.; Sarwar, M.I.; Shabbir, S. Design and fabrication of covalently linked PEGylated nanohybrids of ZnO quantum dots with preserved and tunable fluorescence. Mater. Des. 2017, 131, 156–166. [Google Scholar] [CrossRef]
- Jacak, L.; Wójs, A.; Hawrylak, P. Quantum Dots; Springer: Berlin, Germany, 2013. [Google Scholar] [CrossRef]
- Senger, R.T.; Bajaj, K.K. Optical properties of confined polaronic excitons in spherical ionic quantum dots. Phys. Rev. B 2003, 68, 045313. [Google Scholar] [CrossRef]
- Panda, S.K.; Jacob, C. Surface enhanced Raman scattering and photoluminescence properties of catalytic grown ZnO nanostructures. Appl. Phys. A 2009, 96, 805–811. [Google Scholar] [CrossRef]
- Klimov, V.I. Optical gain and stimulated emission in nanocrystal quantum dots. Science 2000, 290, 314–317. [Google Scholar] [CrossRef]
- Schmitt-Rink, S.; Miller, D.A.B.; Chemla, D.S. Theory of the linear and nonlinear optical properties of semiconductor microcrystallites. Phys. Rev. B 1987, 35, 8113. [Google Scholar] [CrossRef]
- Hu, J.Q.; Li, Q.; Wong, N.B.; Lee, C.S.; Lee, S.T. Synthesis of uniform hexagonal prismatic ZnO whiskers. Chem. Mater. 2002, 14, 1216–1219. [Google Scholar] [CrossRef]
- Lao, J.Y.; Huang, J.Y.; Wang, D.Z.; Ren, Z.F. ZnO nanobridges and nanonails. Nano Lett. 2003, 3, 235–238. [Google Scholar] [CrossRef]
- Lao, J.Y.; Wen, J.G.; Ren, Z.F. Hierarchical ZnO nanostructures. Nano Lett. 2002, 2, 1287–1291. [Google Scholar] [CrossRef]
- Guo, L.; Ji, Y.L.; Xu, H.; Simon, P.; Wu, Z. Regularly shaped, single-crystalline ZnO nanorods with wurtzite structure. J. Am. Chem. Soc. 2002, 124, 14864–14865. [Google Scholar] [CrossRef] [PubMed]
- Bouropoulos, N.; Tsiaoussis, I.; Poulopoulos, P.; Roditis, P.; Baskoutas, S. ZnO controllable sized quantum dots produced by polyol method: An experimental and theoretical study. Mater. Lett. 2008, 62, 3533–3535. [Google Scholar] [CrossRef]
- Rani, S.; Suri, P.; Shishodia, P.K.; Mehra, R.M. Synthesis of nanocrystalline ZnO powder via sol–gel route for dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2008, 92, 1639–1645. [Google Scholar] [CrossRef]
- Paul, G.K.; Bandyopadhyay, S.; Sen, S.K.; Sen, S. Structural, optical and electrical studies on sol–gel deposited Zr doped ZnO films. Mater. Chem. Phys. 2003, 79, 71–75. [Google Scholar] [CrossRef]
- Qian, D.; Jiang, J.Z.; Hansen, P.L. Preparation of ZnO nanocrystals via ultrasonic irradiation. Chem. Commun. 2003, 9, 1078–1079. [Google Scholar] [CrossRef]
- Yu, W.; Li, X.; Gao, X. Catalytic synthesis and structural characteristics of high-quality tetrapod-like ZnO nanocrystals by a modified vapor transport process. Cryst. Growth Des. 2005, 5, 151–155. [Google Scholar] [CrossRef]
- Hu, X.L.; Zhu, Y.J.; Wang, S.W. Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods. Mater. Chem. Phys. 2004, 88, 421–426. [Google Scholar] [CrossRef]
- Asok, A.; Kulkarni, A.R.; Gandhi, M.N. Defect rich seed mediated growth: A novel synthesis method to enhance defect emission in nanocrystals. J. Mater. Chem. C 2014, 2, 1691–1697. [Google Scholar] [CrossRef]
- Cheng, B.; Samulski, E.T. Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios. Chem. Commun. 2004, 8, 986–987. [Google Scholar] [CrossRef] [PubMed]
- Baruwati, B.; Kumar, D.K.; Manorama, S.V. Hydrothermal synthesis of highly crystalline ZnO nanoparticles: A competitive sensor for LPG and EtOH. Sens. Actuators B Chem. 2006, 119, 676–682. [Google Scholar] [CrossRef]
- Aranovich, J.; Ortiz, A.; Bube, R.H. Optical and electrical properties of ZnO films prepared by spray pyrolysis for solar cell applications. J. Vac. Sci. Technol. 1979, 16, 994–1003. [Google Scholar] [CrossRef]
- Natsume, Y.; Sakata, H.; Hirayama, T.; Yanagida, H. Low-temperature conductivity of ZnO films prepared by chemical vapor deposition. J. Appl. Phys. 1992, 72, 4203–4207. [Google Scholar] [CrossRef]
- Yao, B.D.; Chan, Y.F.; Wang, N. Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett. 2002, 81, 757–759. [Google Scholar] [CrossRef]
- Rataboul, F.; Nayral, C.; Casanove, M.J.; Maisonnat, A.; Chaudret, B. Synthesis and characterization of monodisperse zinc and zinc oxide nanoparticles from the organometallic precursor [Zn (C 6 H 11) 2]. J. Organomet. Chem. 2002, 643, 307–312. [Google Scholar] [CrossRef]
- Wang, J.; Gao, L. Synthesis and characterization of ZnO nanoparticles assembled in one-dimensional order. Inorg. Chem. Commun. 2003, 6, 877–881. [Google Scholar] [CrossRef]
- Yin, J.; Gao, F.; Wei, C.; Lu, Q. Water amount dependence on morphologies and properties of ZnO nanostructures in double-solvent system. Sci. Rep. 2014, 4, 3736. [Google Scholar] [CrossRef]
- Liu, D.P.; Li, G.D.; Su, Y.; Chen, J.S. Highly Luminescent ZnO Nanocrystals Stabilized by Ionic-Liquid Components. Angew. Chem. Int. Ed. 2006, 45, 7370–7373. [Google Scholar] [CrossRef]
- Yang, C.L.; Wang, J.N.; Ge, W.K.; Guo, L.; Yang, S.H.; Shen, D.Z. Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots. J. Appl. Phys. 2001, 90, 4489–4493. [Google Scholar] [CrossRef]
- Gupta, A.; Bhatti, H.S.; Kumar, D.; Verma, N.K.; Tandon, D.R. Nano and bulk crystals of ZnO: Synthesis and characterization. Dig. Int. J. Nanomater. Biostruct. 2006, 1, 1–9. [Google Scholar] [CrossRef]
- Moussodia, R.-O.; Balan, L.; Schneider, R. Synthesis and characterization of water-soluble ZnO quantum dots prepared through PEG-siloxane coating. New J. Chem. 2008, 32, 1388. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, Y. Preparation of pure ZnO nanoparticles by a simple solid-state reaction method. Appl. Phys. A 2008, 92, 275–278. [Google Scholar] [CrossRef]
- Fu, Y.-S.; Du, X.-W.; Kulinich, S.A.; Qiu, J.-S.; Qin, W.-J.; Li, R.; Sun, J.; Liu, J. Stable Aqueous Dispersion of ZnO Quantum Dots with Strong Blue Emission via Simple Solution Route. J. Am. Chem. Soc. 2007, 129, 16029–16033. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, P.T.; Chen, Y.C.; Wang, C.M.; Tsai, Y.Z.; Hu, C.C. Structural and photoluminescence characteristics of ZnO films by room temperature sputtering and rapid thermal annealing process. Appl. Phys. A 2006, 84, 345–349. [Google Scholar] [CrossRef]
- Petti, L.; Muenzenrieder, N.; Vogt, C.; Faber, H.; Büthe, L.; Cantarella, G.; Bottacchi, F.; Anthopoulos, T.D.; Troester, G. Metal oxide semiconductor thin-film transistors for flexible electronics. Appl. Phys. Rev. 2016, 3, 021303. [Google Scholar] [CrossRef]
- Nathan, A.; Ahnood, A.; Cole, M.T.; Lee, S.; Suzuki, Y.; Hiralal, P.; Bonaccorso, F.; Hasan, T.; Garcia-Gancedo, L.; Dyadyusha, A.; et al. Flexible electronics: The next ubiquitous platform. Proc. IEEE 2012, 100, 1486–1517. [Google Scholar] [CrossRef]
- Moonen, P.F.; Yakimets, I.; Huskens, J. Fabrication of transistors on flexible substrates: From mass-printing to high-resolution alternative lithography strategies. Adv. Mater. 2012, 24, 5526–5541. [Google Scholar] [CrossRef]
- Yang, S.; Bak, J.Y.; Yoon, S.M.; Ryu, M.K.; Oh, H.; Hwang, C.S.; Kim, G.H.; Park, S.H.K.; Jang, J. Low-temperature processed flexible In–Ga–Zn–O thin-film transistors exhibiting high electrical performance. IEEE Electron Device Lett. 2011, 32, 1692–1694. [Google Scholar] [CrossRef]
- Wu, L.; Wu, Y.; Pan, X.; Kong, F. Synthesis of ZnO nanorod and the annealing effect on its photoluminescence property. Opt. Mater. 2006, 28, 418–422. [Google Scholar] [CrossRef]
- Li, J.; Zhao, D.; Meng, X.; Zhang, Z.; Zhang, J.; Shen, D.; Lu, Y.; Fan, X. Enhanced ultraviolet emission from ZnS-coated ZnO nanowires fabricated by self-assembling method. J. Phys. Chem. B 2006, 110, 14685–14687. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.J.; Kang, J.; Chang, K.J. Defect properties and p-type doping efficiency in phosphorus-doped ZnO. Phys. Rev. B 2006, 73, 024117. [Google Scholar] [CrossRef]
- Li, Y.; Della Valle, F.; Simonnet, M.; Yamada, I.; Delaunay, J.J. Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires. Appl. Phys. Lett. 2009, 94, 023110. [Google Scholar] [CrossRef]
- Meyer, B.; Marx, D.; Dulub, O.; Diebold, U.; Kunat, M.; Langenberg, D.; Wöll, C. Partial dissociation of water leads to stable superstructures on the surface of zinc oxide. Angew. Chem. Int. Ed. 2004, 43, 6641–6645. [Google Scholar] [CrossRef] [PubMed]
- Dulub, O.; Meyer, B.; Diebold, U. Observation of the dynamical change in a water monolayer adsorbed on a ZnO surface. Phys. Rev. Lett. 2005, 95, 136101. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.E.; Ji, H.J.; Kim, K.; Kim, G.T.; Bae, C.H.; Park, S.M.; Kim, Y.K.; Ha, J.S. Origin of the slow photoresponse in an individual sol-gel synthesized ZnO nanowire. Appl. Phys. Lett. 2007, 90, 153106. [Google Scholar] [CrossRef]
- Mahamuni, S.; Borgohain, K.; Bendre, B.S.; Leppert, V.J.; Risbud, S.H. Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots. J. Appl. Phys. 1999, 85, 2861–2865. [Google Scholar] [CrossRef]
- Jin, B.J.; Im, S.; Lee, S.Y. Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition. Thin Solid Film. 2000, 366, 107–110. [Google Scholar] [CrossRef]
- Yu, J.; Wang, G.; Cheng, B.; Zhou, M. Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders. Appl. Catal. B 2007, 69, 171–180. [Google Scholar] [CrossRef]
- Narayanan, R.; El-Sayed, M.A. Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles. J. Am. Chem. Soc. 2003, 125, 8340–8347. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Bando, Y.; Shen, G.; Golberg, D. Thickness-dependent photocatalytic performance of ZnO nanoplatelets. J. Phys. Chem. B 2006, 110, 15146–15151. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, N.; Pal, A.; Pal, T. Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir 2006, 17, 1800–1802. [Google Scholar] [CrossRef]
- Biju, V.; Itoh, T.; Baba, Y.; Ishikawa, M. Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube. J. Phys. Chem. B 2006, 110, 26068–26074. [Google Scholar] [CrossRef] [PubMed]
- Biju, V.; Makita, Y.; Sonoda, A.; Yokoyama, H.; Baba, Y.; Ishikawa, M. Temperature-sensitive photoluminescence of CdSe quantum dot clusters. J. Phys. Chem. B 2005, 109, 13899–13905. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Jeong, S.; Kim, D.; Hwang, S.; Jeon, M.; Moon, J. ZnO nanoparticles with controlled shapes and sizes prepared using a simple polyol synthesis. Superlattices Microstruct. 2008, 43, 330–339. [Google Scholar] [CrossRef]
- Babu, K.S.; Reddy, A.R.; Sujatha, C.; Reddy, K.V.G.; Mallika, A.N. Annealing effects on photoluminescence of ZnO nanoparticles. Mater. Lett. 2013, 110, 10–12. [Google Scholar] [CrossRef]
- Bao, D.; Gu, H.; Kuang, A. Sol-gel-derived c-axis oriented ZnO thin films. Thin Solid Film. 1998, 312, 37–39. [Google Scholar] [CrossRef]
- Mathew, J.P.; Varghese, G.; Mathew, J. Effect of post-thermal annealing on the structural and optical properties of ZnO thin films prepared from a polymer precursor. Chin. Phys. B 2012, 21, 078104. [Google Scholar] [CrossRef]
- Raji, R.; Gopchandran, K.G. ZnO nanostructures with tunable visible luminescence: Effects of kinetics of chemical reduction and annealing. J. Sci. Adv. Mater. Devices 2017, 2, 51–58. [Google Scholar] [CrossRef]
- Moghaddam, F.M.; Saeidian, H. Controlled microwave-assisted synthesis of ZnO nanopowder and its catalytic activity for O-acylation of alcohol and phenol. Mater. Sci. Eng. B 2007, 139, 265–269. [Google Scholar] [CrossRef]
- Raoufi, D. Synthesis and photoluminescence characterization of ZnO nanoparticles. J. Lumin. 2013, 134, 213–219. [Google Scholar] [CrossRef]
- Lu, P.; Zhang, H.; Satoh, T.; Ohkubo, T.; Yamazaki, A.; Takano, K.; Kamiya, T.; Zhu, L.; Huang, Y.; Jiang, Z. Investigation on the stability of water-soluble ZnO quantum dots in KB cells by X-ray fluorescence and absorption methods. Nucl. Instrum. Methods Phys. Res. Sect. B 2011, 269, 1940–1943. [Google Scholar] [CrossRef]
- Schneider, R.; Balan, L.; Aldeek, F. Nanomaterials; InTech: London, UK, 2011. [Google Scholar] [CrossRef]
- Vanheusden, K.; Warren, W.L.; Seager, C.H.; Tallant, D.R.; Voigt, J.A.; Gnade, B.E. Mechanisms behind green photoluminescence in ZnO phosphor powders. J. App. Phys. 1996, 79, 7983–7990. [Google Scholar] [CrossRef]
- Guo, L.; Yang, S.; Yang, C.; Yu, P.; Wang, J.; Ge, W.; Wong, G.K. Synthesis and characterization of poly (vinylpyrrolidone)-modified zinc oxide nanoparticles. Chem. Mater. 2000, 12, 2268–2274. [Google Scholar] [CrossRef]
- Klason, P.; Børseth, T.M.; Zhao, Q.X.; Svensson, B.G.; Kuznetsov, A.Y.; Bergman, P.J.; Willander, M. Temperature dependence and decay times of zinc and oxygen vacancy related photoluminescence bands in zinc oxide. Solid State Commun. 2008, 145, 321–326. [Google Scholar] [CrossRef]
- Manzano, C.V.; Alegre, D.; Caballero-Calero, O.; Alén, B.; Martín-González, M.S. Synthesis and luminescence properties of electrodeposited ZnO films. J. Appl. Phys. 2011, 110, 043538. [Google Scholar] [CrossRef]
- Pandey, S.K.; Mukherjee, C.; Mishra, P.; Gupta, M.; Barman, S.R.; D’Souza, S.W.; Mukherjee, S. Effect of growth temperature on structural, electrical and optical properties of dual ion beam sputtered ZnO thin films. J. Mater. Sci. Mater. Electron. 2013, 24, 2541–2547. [Google Scholar] [CrossRef]
- Sadaf, J.R.; Israr, M.Q.; Kishwar, S.; Nur, O.; Willander, M. White electroluminescence using ZnO nanotubes/GaN heterostructure light-emitting diode. Nanoscale Res. Lett. 2010, 5, 957. [Google Scholar] [CrossRef]
- Norberg, N.S.; Gamelin, D.R. Influence of surface modification on the luminescence of colloidal ZnO nanocrystals. J. Phys. Chem. B 2005, 109, 20810–20816. [Google Scholar] [CrossRef]
- Kwok, W.M.; Djurišić, A.B.; Leung, Y.H.; Chan, W.K.; Phillips, D.L. Time-resolved photoluminescence study of the stimulated emission in ZnO nanoneedles. App. Phys. Lett. 2005, 87, 093108. [Google Scholar] [CrossRef]
- Cross, R.B.M.; De Souza, M.M.; Narayanan, E.S. A low temperature combination method for the production of ZnO nanowires. Nanotechnology 2005, 16, 2188. [Google Scholar] [CrossRef] [PubMed]
- Studenikin, S.A.; Golego, N.; Cocivera, M. Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. J. App. Phys. 1998, 84, 2287–2294. [Google Scholar] [CrossRef]
- Liu, X.; Wu, X.; Cao, H.; Chang, R.P.H. Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J. App. Phys. 2004, 95, 3141–3147. [Google Scholar] [CrossRef]
- Fan, H.J.; Scholz, R.; Kolb, F.M.; Zacharias, M.; Gösele, U.; Heyroth, F.; Eisenschmidt, C.; Hempel, T.; Christen, J. On the growth mechanism and optical properties of ZnO multi-layer nanosheets. Appl. Phys. A 2004, 79, 1895–1900. [Google Scholar] [CrossRef]
- Gomi, M.; Oohira, N.; Ozaki, K.; Koyano, M. Photoluminescent and structural properties of precipitated ZnO fine particles. Jpn. J. Appl. Phys. 2003, 42, 481. [Google Scholar] [CrossRef]
- Zhou, H.; Alves, H.; Hofmann, D.M.; Kriegseis, W.; Meyer, B.K.; Kaczmarczyk, G.; Hoffmann, A. Behind the weak excitonic emission of ZnO quantum dots: ZnO/Zn(OH)2 core-shell structure. App. Phys. Lett. 2002, 80, 210–212. [Google Scholar] [CrossRef]
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doğan, S.; Avrutin, V.C.S.J.; Cho, S.J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 11. [Google Scholar] [CrossRef]
- Lin, B.; Fu, Z.; Jia, Y. Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 2001, 79, 943–945. [Google Scholar] [CrossRef]
- Tonon, C.; Duvignacq, C.; Teyssedre, G.; Dinguirard, M. Degradation of the optical properties of ZnO-based thermal control coatings in simulated space environment. J. Phys. D Appl. Phys. 2001, 34, 124. [Google Scholar] [CrossRef]
- Yatmaz, H.C.; Akyol, A.; Bayramoglu, M. Kinetics of the photocatalytic decolorization of an azo reactive dye in aqueous ZnO suspensions. Ind. Eng. Chem. Res. 2004, 43, 6035–6039. [Google Scholar] [CrossRef]
- Xiong, H.M.; Shchukin, D.G.; Möhwald, H.; Xu, Y.; Xia, Y.Y. Sonochemical synthesis of highly luminescent zinc oxide nanoparticles doped with magnesium (II). Angew. Chem. Int. Ed. 2009, 48, 2727–2731. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Priyam, A.; Bhattacharya, S.C.; Saha, A. Mechanistic aspects of quantum dot based probing of Cu (II) ions: Role of dendrimer in sensor efficiency. J. Fluoresc. 2009, 19, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Xiaohong, W.; Wei, Q.; Weidong, H. Thin bismuth oxide films prepared through the sol–gel method as photocatalyst. J. Mol. Catal. A Chem. 2007, 261, 167–171. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, S.; Peng, B.; Wang, H.; Yu, H.; Peng, F. Enhancing the photocatalytic efficiency of TiO2 nanotube arrays for H2 production by using non-noble metal cobalt as co-catalyst. Mater. Lett. 2016, 165, 37–40. [Google Scholar] [CrossRef]
- Jimenez-Cadena, G.; Comini, E.; Ferroni, M.; Vomiero, A.; Sberveglieri, G. Synthesis of different ZnO nanostructures by modified PVD process and potential use for dye-sensitized solar cells. Mater. Chem. Phys. 2010, 124, 694–698. [Google Scholar] [CrossRef]
- Ng, S.M.; Wong, D.S.N.; Phung, J.H.C.; Chua, H.S. Integrated miniature fluorescent probe to leverage the sensing potential of ZnO quantum dots for the detection of copper (II) ions. Talanta 2013, 116, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.V.; Haque, M.A. Mechanical properties of ZnO nanowires. Sens. Actuators A 2007, 134, 169–176. [Google Scholar] [CrossRef]
- Zavar, S. A novel three component synthesis of 2-amino-4H-chromenes derivatives using nano ZnO catalyst. Arab. J. Chem. 2017, 10, S67–S70. [Google Scholar] [CrossRef]
- Hassan, N.K.; Hashim, M.R.; Bououdina, M. One-dimensional ZnO nanostructure growth prepared by thermal evaporation on different substrates: Ultraviolet emission as a function of size and dimensionality. Ceram. Int. 2013, 39, 7439–7444. [Google Scholar] [CrossRef]
- Ju, D.; Xu, H.; Zhang, J.; Guo, J.; Cao, B. Direct hydrothermal growth of ZnO nanosheets on electrode for ethanol sensing. Sens. Actuators B 2014, 201, 444–451. [Google Scholar] [CrossRef]
- Jang, E.S.; Won, J.H.; Hwang, S.J.; Choy, J.H. Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity. Adv. Mater. 2006, 18, 3309–3312. [Google Scholar] [CrossRef]
- Mclaren, A.; Valdes-Solis, T.; Li, G.; Tsang, S.C. Shape and size effects of ZnO nanocrystals on photocatalytic activity. J. Am. Chem. Soc. 2009, 131, 12540–12541. [Google Scholar] [CrossRef]
- Talebian, N.; Nilforoushan, M.R. Comparative study of the structural, optical and photocatalytic properties of semiconductor metal oxides toward degradation of methylene blue. Thin Solid Film 2010, 518, 2210–2215. [Google Scholar] [CrossRef]
- Amornpitoksuk, P.; Suwanboon, S.; Sangkanu, S.; Sukhoom, A.; Wudtipan, J.; Srijan, K.; Kaewtaro, S. Synthesis, photocatalytic and antibacterial activities of ZnO particles modified by diblock copolymer. Powder Technol. 2011, 212, 432–438. [Google Scholar] [CrossRef]
- Kim, S.J.; Park, D.W. Preparation of ZnO nanopowders by thermal plasma and characterization of photo-catalytic property. Appl. Surf. Sci. 2009, 255, 5363–5367. [Google Scholar] [CrossRef]
- Delgado, G.T.; Romero, C.Z.; Hernández, S.M.; Pérez, R.C.; Angel, O.Z. Optical and structural properties of the sol–gel-prepared ZnO thin films and their effect on the photocatalytic activity. Sol. Energy Mater. Sol. Cells 2009, 93, 55–59. [Google Scholar] [CrossRef]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368. [Google Scholar] [CrossRef]
- Author, A. Improving fluorescence detection in lab on chip devices. Lab A Chip 2008, 8, 649–652. [Google Scholar] [CrossRef]
- Akil-Jradi, S.; Jradi, S.; Plain, J.; Adam, P.-M.; Bijeon, J.-L.; Royer, P.; Bachelot, R. Micro/nanoporous polymer chips as templates for highly sensitive SERS sensors. RSC Adv. 2012, 2, 7837–7842. [Google Scholar] [CrossRef]
- Khanafer, M.; Issa, A.; Akil, S.; Hamieh, T.; Adam, P.M.; Jradi, S. A general strategy to incorporate a wide range of metallic salts into ring-like organized nanostructures via polymer self-assembly. RSC Adv. 2016, 6, 102843–102852. [Google Scholar] [CrossRef]
- Khanafer, M.; Izquierdo-Lorenzo, I.; Akil, S.; Louarn, G.; Toufaily, J.; Hamieh, T.; Adam, P.-M.; Jradi, S. Silver Nanoparticle Rings of Controllable Size: Multi-Wavelength SERS Response and High Enhancement of Three Pyridine Derivatives. ChemistrySelect 2016, 1, 1201–1206. [Google Scholar] [CrossRef]
- Omar, R.; Naciri, A.E.; Jradi, S.; Battie, Y.; Toufaily, J.; Mortada, H.; Akil, S. One-step synthesis of a monolayer of monodisperse gold nanocubes for SERS substrates. J. Mater. Chem. C 2017, 5, 10813–10821. [Google Scholar] [CrossRef]
ZnO Annealing Temperature (°C) | XRD | ||
---|---|---|---|
%ZnO | a = b (nm) | c (nm) | |
n/a | 9% | 0.3313 | 0.5273 |
80 | 10% | 0.3248 | 0.5195 |
100 | 30% | 0.3252 | 0.5207 |
150 | 75% | 0.3251 | 0.5209 |
250 | 99% | 0.3247 | 0.5202 |
500 | 100% | 0.3246 | 0.5201 |
800 | 100% | 0.3243 | 0.5197 |
ZnO Annealing Temperature (°C) | UV-Vis Absorption | |
---|---|---|
Wavelength Absorption Peak (nm) | Optical Band Gap (eV) | |
n/a | 365 | 3.40 |
80 | 375 | 3.31 |
100 | 378 | 3.28 |
150 | 371 | 3.34 |
250 | 375 | 3.31 |
500 | 378 | 3.28 |
ZnO Annealing Temperature (°C) | Photocatalysis | |||
---|---|---|---|---|
Mass of ZnO (mg) | % of MB Degradation | Photodegradation Rate (min−1) | Regression Coefficient (R2) | |
n/a | 0.36 | 13.7 | 0.0012 | 0.93 |
80 | 0.4 | 6.6 | 0.0008 | 0.92 |
100 | 1.2 | 16.8 | 0.0011 | 0.88 |
150 | 3 | 86.3 | 0.0082 | 0.94 |
250 | 3.96 | 98.0 | 0.0093 | 0.90 |
500 | 4 | 94.9 | 0.0073 | 0.88 |
800 | 4 | 67.0 | 0.0059 | 0.99 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahine, I.; Beydoun, N.; Gaumet, J.J.; Bendeif, E.-E.; Rinnert, H.; Magri, P.; En Naciri, A.; Miska, P.; Jradi, S.; Akil, S. Pure, Size Tunable ZnO Nanocrystals Assembled into Large Area PMMA Layer as Efficient Catalyst. Catalysts 2019, 9, 162. https://doi.org/10.3390/catal9020162
Shahine I, Beydoun N, Gaumet JJ, Bendeif E-E, Rinnert H, Magri P, En Naciri A, Miska P, Jradi S, Akil S. Pure, Size Tunable ZnO Nanocrystals Assembled into Large Area PMMA Layer as Efficient Catalyst. Catalysts. 2019; 9(2):162. https://doi.org/10.3390/catal9020162
Chicago/Turabian StyleShahine, Issraa, Nour Beydoun, Jean Jacques Gaumet, El-Eulmi Bendeif, Hervé Rinnert, Pierre Magri, Aotmane En Naciri, Patrice Miska, Safi Jradi, and Suzanna Akil. 2019. "Pure, Size Tunable ZnO Nanocrystals Assembled into Large Area PMMA Layer as Efficient Catalyst" Catalysts 9, no. 2: 162. https://doi.org/10.3390/catal9020162