The Synthesis of Mannose-6-Phosphate Using Polyphosphate-Dependent Mannose Kinase
Abstract
:1. Introduction
2. Results and Discussion
2.1. Construction of Heterologous Expression Vector and Expression of Protein
2.2. Enzyme Catalytic Reaction Verification
2.3. Optimization of Conditions
2.3.1. Optimization of Reaction Time
2.3.2. Optimization of Temperature
2.3.3. Optimization of Mg2+ Content
2.3.4. Optimization of Substrate Addition
2.3.5. Optimization of the Substrate Molar Ratio
2.3.6. Optimization of Metal Ions
2.3.7. Optimization of Various Types of Polyphosphates
2.3.8. Determination of Kinetic Parameters
2.4. Response Surface Method
2.5. Large Scale Synthesis of M6P
3. Materials and Methods
3.1. Strains, Plasmids, and Chemicals
3.2. Expression of Recombinant Polyphosphate-Dependent Mannose Kinase
3.2.1. Expression Vector Transformation
3.2.2. Induced Expression
3.3. SDS–PAGE Protein Electrophoresis
3.4. Enzyme Catalytic Verification
3.5. Effects of Various Parameters on Polyphosphate-Dependent Mannose Kinase Activity
3.5.1. Effect of Reaction Time
3.5.2. Effect of Temperature
3.5.3. Effect of Mg2+ Content
3.5.4. Effect of Substrate Addition
3.5.5. Effect of Substrate Molar Ratio
3.5.6. Effect of Metal Ions
3.5.7. Effect of Various Types of Polyphosphate
3.5.8. Determination of Kinetic Parameters
3.6. Response Surface Method
3.7. Large Scale Synthesis of M6P
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ghosh, P.; Dahms, N.M.; Kornfeld, S. Mannose 6-phosphate receptors: New twists in the tale. Nat. Rev. Mol. Cell Biol. 2003, 4, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, M.F.; Prata, M.A.; Alves, S. Mannose-6-phosphate pathway: A review on its role in lysosomal function and dysfunction. Mol. Genet. Metab. 2012, 105, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Ara, A.; Ahmed, K.A.; Xiang, J. Mannose-6-phosphate receptor: A novel regulator of T cell immunity. Cell. Mol. Immunol. 2018, 15, 986–988. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Nathans, D. Proliferin secreted by cultured cells binds to mannose 6-phosphate receptors. J. Biol. Chem. 1988, 263, 3521–3527. [Google Scholar] [PubMed]
- Khanjin, N.A.; Montero, J.L. Synthesis of mannose-6-phosphate analogs: Large-scale preparation of isosteric mannose-6-phosphonate via cyclic sulfate precursor. Tetrahedron Lett. 2002, 43, 4017–4020. [Google Scholar] [CrossRef]
- Albi, T.; Serrano, A. Inorganic polyphosphate in the microbial world. Emerging roles for a multifaceted biopolymer. World J. Microbiol. Biotechnol. 2016, 32, 27. [Google Scholar] [CrossRef] [PubMed]
- Mukai, T.; Kawai, S.; Matsukawa, H.; Matuo, Y.; Murata, K. Characterization and Molecular Cloning of a Novel Enzyme Inorganic Polyphosphate/ATP-Glucomannokinase, of Arthrobacter sp. Strain KM. Appl. Environ. Microbiol. 2003, 69, 3849–3857. [Google Scholar] [CrossRef] [PubMed]
- Parveen, S.; Chen, B.Q.; Liu, L.; Tan, T.W. Enzymatic phosphorylation of mannose by glucomannokinase from Mycobacterium phlei using inorganic polyphosphate. Enzym. Microb. Technol. 2017, 104, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Hakalin, N.L.S.; Gutiérrez, M.M.; Prieto, A.; Martínez, M.J. Optimization of lipase-catalyzed synthesis of β-sitostanol esters by response surface methodology. Food Chem. 2018, 261, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Koide, M.; Miyanaga, A.; Kudo, F.; Eguchi, T. Characterization of Polyphosphate Glucokinase SCO5059 from Streptomyces coelicolor A3(2). Biosci. Biotechnol. Biochem. 2013, 77, 2322–2324. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Jiang, Y.J.; Yu, Q.S.; Gao, H. Molecular Dynamics Simulations on the Role of Structural Mg2+ Ions in Phosphoryl Transfer Catalyzed by GSK-3β. Acta Phys. Chim. Sin. 2011, 27, 207–212. [Google Scholar]
- Nocek, B.P.; Khusnutdinova, A.N.; Ruszkowski, M.; Flick, R.; Burda, M.; Batyrova, K.; Brown, G.; Mucha, A.; Joachimiak, A.; Berlicki, Ł.; et al. Structural Insights into Substrate Selectivity and Activity of Bacterial Polyphosphate Kinases. ACS Catal. 2018, 8, 10746–10760. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, Y.; Ju, X.; Ma, C.; Ma, H.; Chen, J.; Zheng, P.; Sun, J.; Zhu, J.; Ma, Y.; et al. Production of 5-aminolevulinic acid by cell free multi-enzyme catalysis. J. Biotechnol. 2016, 226, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Momeni, A.; Filiaggi, M.A. Comprehensive Study of the Chelation and Coacervation of Alkaline Earth Metals in the Presence of Sodium Polyphosphate Solution. Langmuir 2014, 30, 5256–5266. [Google Scholar] [CrossRef] [PubMed]
- Albi, T.; Serrano, A. Two strictly polyphosphate-dependent gluco(manno)kinases from diazotrophic Cyanobacteria with potential to phosphorylate hexoses from polyphosphates. Appl. Microbiol. Biotechnol. 2015, 99, 3887–3900. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Masuda, Y.; Kirimura, K.; Kino, K. Thermostable ATP regeneration system using polyphosphate kinase from Thermosynechococcus elongatus BP-1 for d-amino acid dipeptide synthesis. J. Biosci. Bioeng. 2007, 103, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Li, C.C.; Zhao, J.; Wang, F.; Tan, T.W.; Liu, L. Enzymatic Production of Glutathione Coupling with an ATP Regeneration System Based on Polyphosphate Kinase. Appl. Biochem. Biotechnol. 2018, 185, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Francis, F.; Sabu, A.; Nampoothiri, K.M.; Ramachandran, S.; Ghosh, S.; Szakacs, G.; Pandey, A. Use of response surface methodology for optimizing process parameters for the production of α-amylase by Aspergillus oryzae. Biochem. Eng. J. 2003, 15, 107–115. [Google Scholar] [CrossRef]
- Baş, D.; Boyacı, İ.H. Modeling and optimization I: Usability of response surface methodology. J. Food Eng. 2007, 78, 836–845. [Google Scholar] [CrossRef]
ATP | Poly(P) | |
---|---|---|
Vmax (µmol/min) | 0.21 | 0.14 |
Kcat (s−1) | 150.17 | 201.41 |
KM (µM) | 4.62 | 1.7 |
−1 | 0 | 1 | |
---|---|---|---|
Mg2+ content (mM) | 1 | 5 | 10 |
Substrate molar ratio (g/L) | 20 | 60 | 100 |
Temperature (°C) | 15 | 30 | 45 |
Experiment Code | Treatment | Mg2+ Content (mM) | Substrate Molar Ratio (g/L) | Temperature (°C) | Conversion (%) |
---|---|---|---|---|---|
16 | 1 | 0 | 0 | 0 | 85.58 |
6 | 2 | 1 | 0 | −1 | 77.55 |
3 | 3 | −1 | 1 | 0 | 45.225 |
11 | 4 | 0 | −1 | 1 | 98.75 |
8 | 5 | 1 | 0 | 1 | 96.7 |
1 | 6 | −1 | −1 | 0 | 70.3 |
10 | 7 | 0 | 1 | −1 | 54.55 |
5 | 8 | −1 | 0 | −1 | 32.9 |
4 | 9 | 1 | 1 | 0 | 83.6 |
13 | 10 | 0 | 0 | 0 | 85.94 |
2 | 11 | 1 | −1 | 0 | 99.17 |
12 | 12 | 0 | 1 | 1 | 78.75 |
15 | 13 | 0 | 0 | 0 | 84.87 |
9 | 14 | 0 | −1 | −1 | 93.275 |
14 | 15 | 0 | 0 | 0 | 85.58 |
17 | 16 | 0 | 0 | 0 | 85.94 |
7 | 17 | −1 | 0 | 1 | 40.55 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Gao, M.; Chen, B.; Tan, T.; Cao, H.; Liu, L. The Synthesis of Mannose-6-Phosphate Using Polyphosphate-Dependent Mannose Kinase. Catalysts 2019, 9, 250. https://doi.org/10.3390/catal9030250
Zhu W, Gao M, Chen B, Tan T, Cao H, Liu L. The Synthesis of Mannose-6-Phosphate Using Polyphosphate-Dependent Mannose Kinase. Catalysts. 2019; 9(3):250. https://doi.org/10.3390/catal9030250
Chicago/Turabian StyleZhu, Wenlong, Miaomiao Gao, Biqiang Chen, Tianwei Tan, Hui Cao, and Luo Liu. 2019. "The Synthesis of Mannose-6-Phosphate Using Polyphosphate-Dependent Mannose Kinase" Catalysts 9, no. 3: 250. https://doi.org/10.3390/catal9030250
APA StyleZhu, W., Gao, M., Chen, B., Tan, T., Cao, H., & Liu, L. (2019). The Synthesis of Mannose-6-Phosphate Using Polyphosphate-Dependent Mannose Kinase. Catalysts, 9(3), 250. https://doi.org/10.3390/catal9030250