Advances in the Metabolic Engineering of Escherichia coli for the Manufacture of Monoterpenes
Abstract
:1. Introduction
2. Engineering Endogenous MEP Pathway in Prokaryotic Chassis
3. Introduction of Heterologous MEV Pathway
4. Optimization of the Expression and Function of the Rate-Limiting Enzymes
5. Controlling the Flux Distribution of Essential Intermediates
5.1. Fusion of Key Enzymes
5.2. Spatial Organization of Heterologous Enzymes
5.3. Decrease the Flux of Essential Intermediates into Irrelevant Endogenous Pathways
6. Improvement of the Toxicity Tolerance for the Host Strain
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gershenzon, J.; Dudareva, N. The function of terpene natural products in the natural world. Nat. Chem. Biol. 2007, 3, 408–414. [Google Scholar] [CrossRef]
- Fidock, D.A.; Rosenthal, P.J.; Croft, S.L.; Brun, R.; Nwaka, S. Antimalarial drug discovery: Efficacy models for compound screening. Nat. Rev. Drug Discov. 2004, 3, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Jennewein, S.; Croteau, R. Taxol: Biosynthesis, molecular genetics, and biotechnological applications. Appl. Microbiol. Biotechnol. 2001, 57, 13–19. [Google Scholar] [PubMed]
- Croteau, R.; Ketchum, R.E.; Long, R.M.; Kaspera, R.; Wildung, M.R. Taxol biosynthesis and molecular genetics. Phytochem. Rev. 2006, 5, 75–97. [Google Scholar] [CrossRef]
- Spanggord, R.J.; Wu, B.; Sun, M.; Lim, P.; Ellis, W.Y. Development and application of an analytical method for the determination of squalene in formulations of anthrax vaccine adsorbed. J. Pharm. Biomed. Anal. 2002, 29, 183–193. [Google Scholar] [CrossRef]
- Arias, J.L.; Reddy, L.H.; Othman, M.; Gillet, B.; Desmaele, D.; Zouhiri, F.; Dosio, F.; Gref, R.; Couvreur, P. Squalene based nanocomposites: A new platform for the design of multifunctional pharmaceutical theragnostics. ACS Nano 2011, 5, 1513–1521. [Google Scholar] [CrossRef] [PubMed]
- Tholl, D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr. Opin. Plant Biol. 2006, 9, 297–304. [Google Scholar] [CrossRef]
- Lange, B.M.; Rujan, T.; Martin, W.; Croteau, R. Isoprenoid biosynthesis: The evolution of two ancient and distinct pathways across genomes. Proc. Natl. Acad. Sci. USA 2000, 97, 13172–13177. [Google Scholar] [CrossRef] [Green Version]
- Kuzuyama, T. Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci. Biotechnol. Biochem. 2002, 66, 1619–1627. [Google Scholar] [CrossRef]
- Rohmer, M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep. 1999, 16, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Smit, A.; Mushegian, A. Biosynthesis of isoprenoids via mevalonate in Archaea: The lost pathway. Genome Res. 2000, 10, 1468–1484. [Google Scholar] [CrossRef]
- Vranová, E.; Coman, D.; Gruissem, W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu. Rev. Plant Biol. 2013, 64, 665–700. [Google Scholar] [CrossRef] [PubMed]
- Murthy, K.N.C.; Jayaprakasha, G.K.; Mantur, S.M.; Patil, B.S. Citrus Monoterpenes: Potential Source of Phytochemicals for Cancer Prevention. In Emerging Trends in Dietary Components for Preventing and Combating Disease; American Chemical Society: Washington, DC, USA, 2012; pp. 545–558. [Google Scholar]
- Sun, J. D-Limonene: Safety and clinical applications. Altern. Med. Rev. 2007, 12, 259–264. [Google Scholar]
- Ciriminna, R.; Lomeli-Rodriguez, M.; Demma Cara, P.; Lopez-Sanchez, J.A.; Pagliaro, M. Limonene: A versatile chemical of the bioeconomy. Chem. Commun. 2014, 50, 15288–15296. [Google Scholar] [CrossRef]
- Chen, W.; Viljoen, A. Geraniol—A review of a commercially important fragrance material. S. Afr. J. Bot. 2010, 76, 643–651. [Google Scholar] [CrossRef]
- Kim, S.H.; Bae, H.C.; Park, E.J.; Lee, C.R.; Kim, B.J.; Lee, S.; Park, H.H.; Kim, S.J.; So, I.; Kim, T.W.; et al. Geraniol inhibits prostate cancer growth by targeting cell cycle and apoptosis pathways. Biochem. Biophys. Res. Commun. 2011, 407, 129–134. [Google Scholar] [CrossRef]
- Sun, H.; Wang, Z.; Yakisich, J.S. Natural products targeting autophagy via the PI3K/Akt/mTOR pathway as anticancer agents. Anticancer Agents Med. Chem. 2013, 13, 1048–1056. [Google Scholar] [CrossRef]
- George, K.W.; Alonso-Gutierrez, J.; Keasling, J.D.; Lee, T.S. Isoprenoid Drugs, Biofuels, and Chemicals-Artemisinin, Farnesene, and Beyond. Adv. Biochem. Eng. Biotechnol. 2015, 148, 355–389. [Google Scholar] [PubMed]
- Gupta, P.; Phulara, S.C. Metabolic engineering for isoprenoid-based biofuel production. J. Appl. Microbiol. 2015, 119, 605–619. [Google Scholar] [CrossRef] [Green Version]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef] [PubMed]
- Cristani, M.; D’Arrigo, M.; Mandalari, G.; Castelli, F.; Sarpietro, M.G.; Micieli, D.; Venuti, V.; Bisignano, G.; Saija, A.; Trombetta, D. Interaction of four monoterpenes contained in essential oils with model membranes: Implications for their antibacterial activity. J. Agric. Food Chem. 2007, 55, 6300–6308. [Google Scholar] [CrossRef] [PubMed]
- Geron, C.; Rasmussen, R.; Arnts, R.R.; Guenther, A. A review and synthesis of monoterpene speciation from forests in the United States. Atmos. Environ. 2000, 34, 1761–1781. [Google Scholar] [CrossRef] [Green Version]
- Koeller, K.M.; Wong, C.H. Enzymes for chemical synthesis. Nature 2001, 409, 232–240. [Google Scholar] [CrossRef]
- Brenner, K.; You, L.; Arnold, F.H. Engineering microbial consortia: A new frontier in synthetic biology. Trends Biotechnol. 2008, 26, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Keasling, J.D. Synthetic biology for synthetic chemistry. ACS Chem. Biol. 2008, 3, 64–76. [Google Scholar] [CrossRef]
- Keasling, J.D. Synthetic biology and the development of tools for metabolic engineering. Metab. Eng. 2012, 14, 189–195. [Google Scholar] [CrossRef]
- Kim, J.; Salvador, M.; Saunders, E.; Gonzalez, J.; Avignone-Rossa, C.; Jimenez, J.I. Properties of alternative microbial hosts used in synthetic biology: Towards the design of a modular chassis. Essays Biochem. 2016, 60, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Carter, O.A.; Peters, R.J.; Croteau, R. Monoterpene biosynthesis pathway construction in Escherichia coli. Phytochemistry 2003, 64, 425–433. [Google Scholar] [CrossRef]
- Du, F.-L.; Yu, H.-L.; Xu, J.-H.; Li, C.-X. Enhanced limonene production by optimizing the expression of limonene biosynthesis and MEP pathway genes in E. coli. Bioresour. Bioprocess. 2014, 1, 10. [Google Scholar] [CrossRef] [Green Version]
- Dunlop, M.J.; Dossani, Z.Y.; Szmidt, H.L.; Chu, H.C.; Lee, T.S.; Keasling, J.D.; Hadi, M.Z.; Mukhopadhyay, A. Engineering microbial biofuel tolerance and export using efflux pumps. Mol. Syst. Biol. 2011, 7, 487. [Google Scholar] [CrossRef]
- Alonso-Gutierrez, J.; Chan, R.; Batth, T.S.; Adams, P.D.; Keasling, J.D.; Petzold, C.J.; Lee, T.S. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab. Eng. 2013, 19, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Formighieri, C.; Melis, A. Carbon partitioning to the terpenoid biosynthetic pathway enables heterologous beta-phellandrene production in Escherichia coli cultures. Arch. Microbiol. 2014, 196, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Sarria, S.; Wong, B.; Garcia Martin, H.; Keasling, J.D.; Peralta-Yahya, P. Microbial synthesis of pinene. ACS Synth. Biol. 2014, 3, 466–475. [Google Scholar] [CrossRef]
- Willrodt, C.; David, C.; Cornelissen, S.; Buhler, B.; Julsing, M.K.; Schmid, A. Engineering the productivity of recombinant Escherichia coli for limonene formation from glycerol in minimal media. Biotechnol. J. 2014, 9, 1000–1012. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, Q.; Cao, Y.; Feng, X.; Zheng, Y.; Zou, H.; Liu, H.; Yang, J.; Xian, M. Microbial production of sabinene—A new terpene-based precursor of advanced biofuel. Microb. Cell Fact. 2014, 13, 20. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, C.; Yoon, S.H.; Jang, H.J.; Choi, E.S.; Kim, S.W. Engineering Escherichia coli for selective geraniol production with minimized endogenous dehydrogenation. J. Biotechnol. 2014, 169, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.M.; Eom, J.H.; Um, Y.; Kim, Y.; Woo, H.M. Microbial Synthesis of Myrcene by Metabolically Engineered Escherichia coli. J. Agric. Food Chem. 2015, 63, 4606–4612. [Google Scholar] [CrossRef]
- Liu, W.; Xu, X.; Zhang, R.; Cheng, T.; Cao, Y.; Li, X.; Guo, J.; Liu, H.; Xian, M. Engineering Escherichia coli for high-yield geraniol production with biotransformation of geranyl acetate to geraniol under fed-batch culture. Biotechnol. Biofuels 2016, 9, 58. [Google Scholar] [CrossRef]
- Tashiro, M.; Kiyota, H.; Kawai-Noma, S.; Saito, K.; Ikeuchi, M.; Iijima, Y.; Umeno, D. Bacterial Production of Pinene by a Laboratory-Evolved Pinene-Synthase. ACS Synth. Biol. 2016, 5, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Burke, C.; Croteau, R. Geranyl diphosphate synthase from Abies grandis: cDNA isolation, functional expression, and characterization. Arch. Biochem. Biophys. 2002, 405, 130–136. [Google Scholar] [CrossRef]
- Burke, C.; Croteau, R. Interaction with the small subunit of geranyl diphosphate synthase modifies the chain length specificity of geranylgeranyl diphosphate synthase to produce geranyl diphosphate. J. Biol. Chem. 2002, 277, 3141–3149. [Google Scholar] [CrossRef]
- Eisenreich, W.; Rohdich, F.; Bacher, A. Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci. 2001, 6, 78–84. [Google Scholar] [CrossRef]
- Eisenreich, W.; Bacher, A.; Arigoni, D.; Rohdich, F. Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell. Mol. Life Sci. 2004, 61, 1401–1426. [Google Scholar] [CrossRef]
- Banerjee, A.; Wu, Y.; Banerjee, R.; Li, Y.; Yan, H.; Sharkey, T.D. Feedback inhibition of deoxy-D-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway. J. Biol. Chem. 2013, 288, 16926–16936. [Google Scholar] [CrossRef] [PubMed]
- Pitera, D.J.; Paddon, C.J.; Newman, J.D.; Keasling, J.D. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab. Eng. 2007, 9, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Martin, V.J.; Pitera, D.J.; Withers, S.T.; Newman, J.D.; Keasling, J.D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 2003, 21, 796–802. [Google Scholar] [CrossRef]
- Bhattacharya, S.K.; Dubey, A.K. Metabolic burden as reflected by maintenance coefficient of recombinant Escherichia coli overexpressing target gene. Biotechnol. Lett. 1995, 17, 1155–1160. [Google Scholar] [CrossRef]
- Rozkov, A.; Avignone-Rossa, C.A.; Ertl, P.F.; Jones, P.; O’Kennedy, R.D.; Smith, J.J.; Dale, J.W.; Bushell, M.E. Characterization of the metabolic burden on Escherichia coli DH1 cells imposed by the presence of a plasmid containing a gene therapy sequence. Biotechnol. Bioeng. 2004, 88, 909–915. [Google Scholar] [CrossRef]
- Yang, J.; Nie, Q.; Ren, M.; Feng, H.; Jiang, X.; Zheng, Y.; Liu, M.; Zhang, H.; Xian, M. Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene. Biotechnol. Biofuels 2013, 6, 60. [Google Scholar] [CrossRef]
- Fell, D.A. Increasing the flux in metabolic pathways: A metabolic control analysis perspective. Biotechnol. Bioeng. 1998, 58, 121–124. [Google Scholar] [CrossRef]
- Kholodenko, B.N.; Lyubarev, A.E.; Kurganov, B.I. Control of the metabolic flux in a system with high enzyme concentrations and moiety-conserved cycles. The sum of the flux control coefficients can drop significantly below unity. Eur. J. Biochem. 2010, 210, 147–153. [Google Scholar] [CrossRef]
- Gustafsson, C.; Govindarajan, S.; Minshull, J. Codon bias and heterologous protein expression. Trends Biotechnol. 2004, 22, 346–353. [Google Scholar] [CrossRef]
- Burke, C.C.; Wildung, M.R.; Croteau, R. Geranyl diphosphate synthase: Cloning, expression, and characterization of this prenyltransferase as a heterodimer. Proc. Natl. Acad. Sci. USA 1999, 96, 13062–13067. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, A.; Gershenzon, J. Cloning and characterization of two different types of geranyl diphosphate synthases from Norway spruce (Picea abies). Phytochemistry 2008, 69, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.H.; Hsieh, F.L.; Ko, T.P.; Teng, K.H.; Liang, P.H.; Wang, A.H. Structure of a heterotetrameric geranyl pyrophosphate synthase from mint (Mentha piperita) reveals intersubunit regulation. Plant Cell 2010, 22, 454–467. [Google Scholar] [CrossRef]
- Aubourg, S.; Lecharny, A.; Bohlmann, J. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol. Genet. Genom. 2002, 267, 730–745. [Google Scholar] [CrossRef]
- Schmidt, A.; Wächtler, B.; Temp, U.; Krekling, T.; Séguin, A.; Gershenzon, J. A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies. Plant Physiol. 2010, 152, 639–655. [Google Scholar] [CrossRef] [PubMed]
- Furubayashi, M.; Ikezumi, M.; Kajiwara, J.; Iwasaki, M.; Fujii, A.; Li, L.; Saito, K.; Umeno, D. A high-throughput colorimetric screening assay for terpene synthase activity based on substrate consumption. PLoS ONE 2014, 9, e93317. [Google Scholar] [CrossRef]
- Jürgens, C.; Strom, A.; Wegener, D.; Hettwer, S.; Wilmanns, M.; Sterner, R. Directed evolution of a (βα) 8-barrel enzyme to catalyze related reactions in two different metabolic pathways. Proc. Natl. Acad. Sci. USA 2000, 97, 9925–9930. [Google Scholar] [CrossRef] [PubMed]
- Keasling, J.D. Manufacturing molecules through metabolic engineering. Science 2010, 330, 1355–1358. [Google Scholar] [CrossRef]
- Lopez-Gallego, F.; Wawrzyn, G.T.; Schmidt-Dannert, C. Selectivity of fungal sesquiterpene synthases: Role of the active site’s H-1 alpha loop in catalysis. Appl. Environ. Microbiol. 2010, 76, 7723–7733. [Google Scholar] [CrossRef] [PubMed]
- Vardakou, M.; Salmon, M.; Faraldos, J.A.; O’Maille, P.E. Comparative analysis and validation of the malachite green assay for the high throughput biochemical characterization of terpene synthases. MethodsX 2014, 1, 187–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dale, G.E.; Oefner, C.; D’Arcy, A. The protein as a variable in protein crystallization. J. Struct. Biol. 2003, 142, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zaro, J.L.; Shen, W.C. Fusion protein linkers: Property, design and functionality. Adv. Drug Deliv. Rev. 2013, 65, 1357–1369. [Google Scholar] [CrossRef] [Green Version]
- Reddy Chichili, V.P.; Kumar, V.; Sivaraman, J. Linkers in the structural biology of protein-protein interactions. Protein Sci. 2013, 22, 153–167. [Google Scholar] [CrossRef]
- Lee, H.; DeLoache, W.C.; Dueber, J.E. Spatial organization of enzymes for metabolic engineering. Metab. Eng. 2012, 14, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Miles, E.W.; Rhee, S.; Davies, D.R. The molecular basis of substrate channeling. J. Biol. Chem. 1999, 274, 12193–12196. [Google Scholar] [CrossRef]
- Zhang, Y.H. Substrate channeling and enzyme complexes for biotechnological applications. Biotechnol. Adv. 2011, 29, 715–725. [Google Scholar] [CrossRef]
- Siu, K.H.; Chen, R.P.; Sun, Q.; Chen, L.; Tsai, S.L.; Chen, W. Synthetic scaffolds for pathway enhancement. Curr. Opin. Biotechnol. 2015, 36, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Dueber, J.E.; Wu, G.C.; Malmirchegini, G.R.; Moon, T.S.; Petzold, C.J.; Ullal, A.V.; Prather, K.L.; Keasling, J.D. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 2009, 27, 753–759. [Google Scholar] [CrossRef]
- Conrado, R.J.; Wu, G.C.; Boock, J.T.; Xu, H.; Chen, S.Y.; Lebar, T.; Turnsek, J.; Tomsic, N.; Avbelj, M.; Gaber, R.; et al. DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Res. 2012, 40, 1879–1889. [Google Scholar] [CrossRef]
- Xie, S.S.; Qiu, X.Y.; Zhu, L.Y.; Zhu, C.S.; Liu, C.Y.; Wu, X.M.; Zhu, L.; Zhang, D.Y. Assembly of TALE-based DNA scaffold for the enhancement of exogenous multi-enzymatic pathway. J. Biotechnol. 2019, 296, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Delebecque, C.J.; Lindner, A.B.; Silver, P.A.; Aldaye, F.A. Organization of intracellular reactions with rationally designed RNA assemblies. Science 2011, 333, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, G.; Garg, A.; Godding, D.; Way, J.C.; Silver, P.A. In vivo co-localization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner. Nucleic Acids Res. 2014, 42, 9493–9503. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, C.; Zhang, Y.; Shen, Y.; Hou, J.; Bao, X. Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae. Microb. Cell Fact. 2017, 16, 17. [Google Scholar] [CrossRef] [PubMed]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [PubMed]
- Cox, S.D.; Mann, C.M.; Markham, J.L.; Bell, H.C.; Gustafson, J.E.; Warmington, J.R.; Wyllie, S.G. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J. Appl. Microbiol. 2010, 88, 170–175. [Google Scholar] [CrossRef]
- Shah, A.A.; Wang, C.; Chung, Y.R.; Kim, J.Y.; Choi, E.S.; Kim, S.W. Enhancement of geraniol resistance of Escherichia coli by MarA overexpression. J. Biosci. Bioeng. 2013, 115, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-F.; Xiong, Z.-Q.; Li, S.-Y.; Wang, Y. Enhancing isoprenoid production through systematically assembling and modulating efflux pumps in Escherichia coli. Appl. Microbiol. Biotechnol. 2013, 97, 8057–8067. [Google Scholar] [CrossRef]
- Jongedijk, E.; Cankar, K.; Buchhaupt, M.; Schrader, J.; Bouwmeester, H.; Beekwilder, J. Biotechnological production of limonene in microorganisms. Appl. Microbiol. Biotechnol. 2016, 100, 2927–2938. [Google Scholar] [CrossRef] [Green Version]
- Putman, M.; van Veen, H.W.; Konings, W.N. Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev. 2000, 64, 672–693. [Google Scholar] [CrossRef]
- Ramos, J.L.; Duque, E.; Gallegos, M.T.; Godoy, P.; Ramos-Gonzalez, M.I.; Rojas, A.; Teran, W.; Segura, A. Mechanisms of solvent tolerance in gram-negative bacteria. Annu. Rev. Microbiol. 2002, 56, 743–768. [Google Scholar] [CrossRef]
- Nikaido, H.; Takatsuka, Y. Mechanisms of RND multidrug efflux pumps. Biochim. Biophys. Acta 2009, 1794, 769–781. [Google Scholar] [CrossRef] [PubMed]
- Turner, W.J.; Dunlop, M.J. Trade-Offs in Improving Biofuel Tolerance Using Combinations of Efflux Pumps. ACS Synth. Biol. 2015, 4, 1056–1063. [Google Scholar] [CrossRef]
- Newman, J.D.; Marshall, J.; Chang, M.; Nowroozi, F.; Paradise, E.; Pitera, D.; Newman, K.L.; Keasling, J.D. High-level production of amorpha-4, 11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli. Biotechnol. Bioeng. 2006, 95, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Dafoe, J.T.; Daugulis, A.J. In situ product removal in fermentation systems: Improved process performance and rational extractant selection. Biotechnol. Lett. 2014, 36, 443–460. [Google Scholar] [CrossRef] [PubMed]
- Schewe, H.; Holtmann, D.; Schrader, J. P450(BM-3)-catalyzed whole-cell biotransformation of alpha-pinene with recombinant Escherichia coli in an aqueous-organic two-phase system. Appl. Microbiol. Biotechnol. 2009, 83, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Brennan, T.C.; Turner, C.D.; Krömer, J.O.; Nielsen, L.K. Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnol. Bioeng. 2012, 109, 2513–2522. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Gutierrez, J.; Kim, E.M.; Batth, T.S.; Cho, N.; Hu, Q.; Chan, L.J.G.; Petzold, C.J.; Hillson, N.J.; Adams, P.D.; Keasling, J.D.; et al. Principal component analysis of proteomics (PCAP) as a tool to direct metabolic engineering. Metab. Eng. 2015, 28, 123–133. [Google Scholar] [CrossRef] [Green Version]
Pathway | Strains of the E. coli Chassis | Origin of the Integrated Enzymes for the Monoterpene Production | Engineering Design | Monoterpene Product | Maximal Monoterpene Yield, Culture and Recovery Methods | Reference |
---|---|---|---|---|---|---|
MEP | BLR (DE3) Codon Plus-RIL cells | 1. tGPPS from Abies grandis 2. tLS from Mentha spicata | 1. Absence of enhanced MEP or MVA pathway 2. Adjusting promoter strength | Limonene | ~5 mg/L, Steam distillation; | [29] |
BL21 (DE3) | 1. tGPPS from Abies grandis 2. tLS from Mentha spicata 3. DXS and IDI from E. coli K12 MG1655 | 1. Codon optimization 2. Plasmid vector and enzyme arrangement selection 3. Integration of gpps and ls in one plasmid; integration of dxs and idi in another plasmid | Limonene | 35.8 mg/L, two-phase culture of n-hexadecane organic layer | [30] | |
MEV | DH1 ΔacrAB | 1. AACT and IDI from E. coli 2. HMGS and tHMGR from Staphylococcus Aureus 3. MVK, PMK, and PMD from Saccharomyces cerevisiae 4. tGPPS from Abies grandis 5. tLS from Mentha spicata 6. efflux pump from Alcanivorax borkumensis | 1. Codon optimization 2. Exogenous pathway introduction 3. Replication origin and promoter strength selection 4. Integration of seven MEV pathway genes in one plasmid; integration of gpps and ls in another plasmid; efflux pump genes integrated in the last plasmid alone. | Limonene | ~60 mg/L, two-phase culture of dodecane organic layer | [31] |
DH1 | 1. AtoB and IDI from E. coli 2. HMGS and tHMGR from Staphylococcus Aureus 3. MK, PMK, and PMD from Saccharomyces cerevisiae 4. tGPPS from Abies grandis 5. tLS from Mentha spicata 6. Cytochrome P450 from Mycobacterium | 1. Codon optimization 2. Exogenous pathway introduction 3. Stronger promoter replacement 4. Integration of seven MEV pathway genes in one plasmid; integration of gpps and ls in one plasmid; integration of limonene-producing genes in one plasmid; integration of P450 system genes in one plasmid | Limonene, Perillyl alcohol | ~435 mg/L, two-phase culture of dodecane organic layer; ~34 mg/L, in situ product recovery strategy based on Amberlite IRA 410 Cl (A) | [32] | |
Rosetta | 1. AtoB from E. coli 2.HMGS and HMGR from Enterococcus faecalis 3. FNI, MK, PMK and PMD from Streptococcus pneumoniae R6 4. tGPPS from Picea abies 5. PHLS from Lavandula angustifolia | 1. Codon optimization 2. Exogenous pathway introduction 3. Integration of seven MEV pathway genes in one plasmid; integration of gpps and phls in one plasmid | β-phellandrene | 25 mg/gdcw, two-phase culture of hexane organic layer | [33] | |
MG1655 | 1. AtoB and IDI from E. coli 2. HMGS and tHMGR from Saccharomyces cerevisiae 3. MK, PMK, and PMD from Saccharomyces cerevisiae 4. tGPPS and tPS from Abies grandis | 1. Codon optimization 2. Exogenous pathway introduction 3. Fusion protein 4. Integration of seven MEV pathway genes in one plasmid; integration of gpps and ps in another plasmid | Pinene | 32.4 mg/L, two-phase culture of dodecane organic layer | [34] | |
BL21 (DE3) | 1. AtoB and IDI from E. coli 2. HMGS and tHMGR from Saccharomyces cerevisiae 3. MK, PMK, and PMD from Saccharomyces cerevisiae 4. tGPPS from Abies grandis 5. tLS from Mentha spicata | 1. Codon optimization 2. Exogenous pathway introduction 3. Integration of seven MEV pathway genes in one plasmid; integration of gpps and ls in another plasmid | Limonene | 2.7 g/L, two-phase culture of diisonoylphtalate organic layer | [35] | |
BL21(DE3) | 1. MvaE and MvaS from Enterococcus faecalis 2. MK, PMK, PMD and IDI from Saccharomyces cerevisiae 3. GPPS from Abies grandis 4. SabS from Salvia pomifera | 1. Codon optimization 2. Exogenous pathway introduction 3. Integration of three upper MEV pathway genes, gpps and sabs in one plasmid; integration of four lower MEV pathway genes in another plasmid | Sabinene | 2.65 g/L | [36] | |
MG1655 | 1. MvaE and MvaS from Enterococcus faecalis 2. MvaK1, MvaK2, MvaD from Streptococcus pneumoniae 3. IDI from E. coli 4. GPPS from site-directed mutation of FPPS 5. tGES from Ocimum basilicum | 1. Codon optimization 2. Exogenous pathway introduction 3. Deletion of E. coli gene yjgB 4. Integration of seven MEV pathway genes in one plasmid; integration of gpps and ges in one plasmid | Geraniol | 182.5 mg/L; two-phase culture of decane organic layer | [37] | |
DH1 | 1. AtoB and IDI from E. coli 2. HMGS and tHMGR from Saccharomyces cerevisiae 3. MK, PMK, and PMD from Saccharomyces cerevisiae 4. tGPPS from Abies grandis 5. tMS from Quercus ilex L. | 1. Codon optimization 2. Exogenous pathway introduction 3. Integration of seven MEV pathway genes and gpps in one plasmid; integration of ms alone in one plasmid | Myrcene | 58.19 mg/L two-phase culture of dodecane organic layer | [38] | |
BL21 (DE3) | 1. MvaE and MvaS from Enterococcus faecalis 2. MK, PMK, PMD and IDI from Saccharomyces cerevisiae 3. tGPPS from Abies grandis 4. tGES from Ocimum basilicum | 1. Codon optimization 2. Exogenous pathway introduction 3. Identification of the role of acetylesterase for converting geranyl acetate to geraniol 4. Integration of three upper MEV pathway genes, gpps and ges in one plasmid; integration of four lower MEV pathway genes in another plasmid | Geraniol | ~ 2.0 g/L; two-phase culture of isopropyl myristate organic layer | [39] | |
XL1-Blue | 1. AtoB and IDI from E. coli 2. HMGS and tHMGR from Staphylococcus Aureus 3. MK, PMK, and PMD from Saccharomyces cerevisiae 4. tGPPS from Abies grandis 5. PS from Pinus taeda | 1. Codon optimization 2. Exogenous pathway introduction 3. Directed evolution of PS 4. Integration of seven MEV pathway genes and gpps in one plasmid; integration of mutant ps alone in another plasmid | Pinene | 140 mg/L; two-phase culture of dodecane organic layer | [40] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, S.-s.; Zhu, L.; Qiu, X.-y.; Zhu, C.-s.; Zhu, L.-y. Advances in the Metabolic Engineering of Escherichia coli for the Manufacture of Monoterpenes. Catalysts 2019, 9, 433. https://doi.org/10.3390/catal9050433
Xie S-s, Zhu L, Qiu X-y, Zhu C-s, Zhu L-y. Advances in the Metabolic Engineering of Escherichia coli for the Manufacture of Monoterpenes. Catalysts. 2019; 9(5):433. https://doi.org/10.3390/catal9050433
Chicago/Turabian StyleXie, Si-si, Lingyun Zhu, Xin-yuan Qiu, Chu-shu Zhu, and Lv-yun Zhu. 2019. "Advances in the Metabolic Engineering of Escherichia coli for the Manufacture of Monoterpenes" Catalysts 9, no. 5: 433. https://doi.org/10.3390/catal9050433
APA StyleXie, S.-s., Zhu, L., Qiu, X.-y., Zhu, C.-s., & Zhu, L.-y. (2019). Advances in the Metabolic Engineering of Escherichia coli for the Manufacture of Monoterpenes. Catalysts, 9(5), 433. https://doi.org/10.3390/catal9050433