Ceria–Zirconia Mixed Metal Oxides Prepared via Mechanochemical Grinding of Carbonates for the Total Oxidation of Propane and Naphthalene
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Performance
2.2. Catalyst Characterisation
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Catalyst Testing
3.3. Catalyst Characterisation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duan, J.; Tan, J.; Yang, L.; Wu, S.; Hao, J. Concentration, Sources and Ozone Formation Potential of Volatile Organic Compounds (VOCs) during Ozone Episode in Beijing. Atmos. Res. 2008, 88, 25–35. [Google Scholar] [CrossRef]
- Ryerson, T.B.; Trainer, M.; Holloway, J.S.; Parrish, D.D.; Huey, L.G.; Sueper, D.T.; Frost, G.J.; Donnelly, S.G.; Schauffler, S.; Atlas, E.L.; et al. Observations of Ozone Formation in Power Plant Plumes and Implications for Ozone Control Strategies. Science 2001, 292, 719–723. [Google Scholar] [CrossRef] [Green Version]
- Gurjar, B.R.; Jain, A.; Sharma, A.; Agarwal, A.; Gupta, P.; Nagpure, A.S.; Lelieveld, J. Human Health Risks in Megacities Due to Air Pollution. Atmos. Environ. 2010, 44, 4606–4613. [Google Scholar] [CrossRef]
- Flagan, R.C.; Seinfield, J.H. Fundamentals of Air Pollution Engineering, 1st ed.; Prentice-Hall Inc.: Upper Saddle River, NJ, USA, 1988; ISBN 0-13-332537-7. [Google Scholar]
- Available online: http://www.theglobaleconomy.com/rankings/lpg_consumption/ (accessed on 28 July 2017).
- Choudhary, V.R.; Deshmukh, G.M.; Mishra, D.P. Kinetics of the Complete Combustion of Dilute Propane and Toluene over Iron-Doped ZrO2 Catalyst. Energy Fuels 2005, 19, 54–63. [Google Scholar] [CrossRef]
- Ramadhas, A.S. Alternative Fuels for Transportation, 6th ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- U.S. Environmental Protection Agency. Contaminant Candidate List Regulatory Determination Support Document for Naphthalene. Fed. Regist. 2003, 68, 42898–42906. [Google Scholar]
- Heneghan, C.S.; Hutchings, G.J.; Taylor, S.H. Catalysis Volume 17; The Royal Society of Chemistry: London, UK, 2004. [Google Scholar]
- Sharma, R.K.; Zhou, B.; Tong, S.; Chuane, K.T.; Tg, A. Catalytic Destruction of Volatile Organic Compounds Using Supported Platinum and Palladium Hydrophobic Catalysts. Ind. Eng. Chem. 1995, 34, 4310–4317. [Google Scholar] [CrossRef]
- Menegazzo, F.; Burti, P.; Signoretto, M.; Manzoli, M.; Vankova, S.; Boccuzzi, F.; Pinna, F.; Strukul, G. Effect of the Addition of Au in Zirconia and Ceria Supported Pd Catalysts for the Direct Synthesis of Hydrogen Peroxide. J. Catal. 2008, 257, 369–381. [Google Scholar] [CrossRef]
- Shapovalov, V.; Metiu, H. Catalysis by Doped Oxides: CO Oxidation by AuxCe1−xO2. J. Catal. 2007, 245, 205–214. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, H.; Xu, B.Q. Comparative Study of Au/ZrO2 Catalysts in CO Oxidation and 1,3-Butadiene Hydrogenation. Catal. Today 2007, 122, 330–337. [Google Scholar] [CrossRef]
- Thammachart, M.; Meeyoo, V.; Risksomboon, T.; Osuwan, S. Catalytic Activity of CeO2–ZrO2 Mixed Oxide Catalysts Prepared Via Sol–Gel Technique: CO Oxidation. Catal. Today 2001, 68, 53–61. [Google Scholar] [CrossRef]
- Bedrane, S.; Descorme, C.; Duprez, D. Investigation of the Oxygen Storage Process on ceria- and Ceria-Zirconia-Supported Catalysts. Catal. Today 2002, 75, 401–405. [Google Scholar] [CrossRef]
- Sellick, D.R.; Aranda, A.; García, T.; López, J.M.; Solsona, B.; Mastral, A.M.; Morgan, D.J.; Carley, A.F.; Taylor, S.H. Influence of the Preparation Method on the Activity of Ceria Zirconia Mixed Oxides for Naphthalene Total Oxidation. Appl. Catal. B Environ. 2013, 132, 98–106. [Google Scholar] [CrossRef]
- Bampenrat, A.; Meeyoo, V.; Kitiyanan, B.; Rangsunvigit, P.; Rirksomboon, T. Catalytic Oxidation of Naphthalene over CeO2–ZrO2 Mixed Oxide Catalysts. Catal. Commun. 2008, 9, 2349–2352. [Google Scholar] [CrossRef]
- Zamar, F.; Trovarelli, A.; De Leitenburg, C.; Dolcetti, G. CeO2-Based Solid Solutions with the Fluorite Structure as Novel and Effective Catalysts for Methane Combustion. J. Chem. Soc. Chem. Commun. 1995, 2, 965. [Google Scholar] [CrossRef]
- Omidvarborna, H.; Kumar, A.; Kim, D.S. Recent Studies on Soot Modeling for Diesel Combustion. Renew. Sustain. Energy Rev. 2015, 48, 635–647. [Google Scholar] [CrossRef]
- Anastas, P.T.; Warner, J.C. Green Chemistry Theory and Practice; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Ralphs, K.; Hardacre, C.; James, S.L. Application of Heterogeneous Catalysts Prepared by Mechanochemical Synthesis. Chem. Soc. Rev. 2013, 42, 7701–7718. [Google Scholar] [CrossRef]
- Suda, A.; Kandori, T.; Ukyo, Y.; Sobukawa, H.; Sugiura, M. Room Temperature Synthesis Solid Phase of Ceria-Zirconia Reaction Solid Solution by. J. Ceram. Soc. Japan 2000, 108, 473–477. [Google Scholar] [CrossRef]
- Carbajal-Ramos, I.A.; Andrade-Gamboa, J.; Gennari, F.C. Nanostructured Ce1−xZrxO2 Solid Solutions Produced by Mechanochemical Processing. Mater. Chem. Phys. 2013, 137, 1073–1080. [Google Scholar] [CrossRef]
- Devaiah, D.; Reddy, L.H.; Park, S.-E.; Reddy, B.M. Ceria–Zirconia Mixed Oxides: Synthetic Methods and Applications. Catal. Rev. 2018, 60, 177–277. [Google Scholar] [CrossRef]
- Shah, P.M.; Day, A.N.; Davies, T.E.; Morgan, D.J.; Taylor, S.H. Mechanochemical Preparation of Ceria-Zirconia Catalysts for the Total Oxidation of Propane and Naphthalene Volatile Organic Compounds. Appl. Catal. B Environ. 2019, 253, 331–340. [Google Scholar] [CrossRef]
- Hasan, M.A.; Zaki, M.I.; Pasupulety, L. IR Investigation of the Oxidation of Propane and Likely C3 and C2 Products over Group IVB Metal Oxide Catalysts. J. Phys. Chem. B 2002, 106, 12747–12756. [Google Scholar] [CrossRef]
- Teng, M.; Luo, L.; Yang, X. Synthesis of Mesoporous Ce1−xZrxO2 (x = 0.2–0.5) and Catalytic Properties of CuO Based Catalysts. Microporous Mesoporous Mater. 2009, 119, 158–164. [Google Scholar] [CrossRef]
- Chen, L.; Mashimo, T.; Omurzak, E.; Okudera, H.; Iwamoto, C.; Yoshiasa, A. Pure Tetragonal ZrO2 Nanoparticles Synthesized by Pulsed Plasma in Liquid. J. Phys. Chem. C 2011, 115, 9370–9375. [Google Scholar] [CrossRef]
- Damyanova, S.; Pawelec, B.; Arishtirova, K.; Huerta, M.V.M.; Fierro, J.L.G. Study of the Surface and Redox Properties of Ceria-Zirconia Oxides. Appl. Catal. A Gen. 2008, 337, 86–96. [Google Scholar] [CrossRef]
- Pauling, L. Atomic Radii and Interatomic Distances in Metals. J. Am. Chem. Soc. 1947, 69, 542–553. [Google Scholar] [CrossRef]
- Vlaic, G.; Di Monte, R.; Fornasiero, P.; Fonda, E.; Kašpar, J.; Graziani, M. Redox Property–Local Structure Relationships in the Rh-Loaded CeO2–ZrO2 Mixed Oxides. J. Catal. 1999, 182, 378–389. [Google Scholar] [CrossRef]
- Chen, A.; Zhou, Y.; Ta, N.; Li, Y.; Shen, W. Redox Properties and Catalytic Performance of Ceria–Zirconia Nanorods. Catal. Sci. Technol. 2015, 5, 4184–4192. [Google Scholar] [CrossRef]
- Trovarelli, A.; Fornasiero, P. Catalysis by Ceria and Related Materials, 2nd ed.; Imperial College Press: London, UK, 2013. [Google Scholar]
- Katz, G. X-Ray Diffraction Powder Pattern of Metastable Cubic ZrO2. J. Am. Ceram. Soc. 1971, 54, 531. [Google Scholar] [CrossRef]
- Bozo, C.; Guilhaume, N.; Garbowski, E.; Primet, M. Combustion of Methane on CeO2–ZrO2 Based Catalysts. Catal. Today 2000, 59, 33–45. [Google Scholar] [CrossRef]
- Hirano, A.; Suda, A. Oxygen Storage Capacity, Specific Surface Area, and Pore-Size Distribution of Ceria–Zirconia Solid Solutions Directly Formed by Thermal Hydrolysis. J. Am. Ceram. Soc. 2003, 11, 2209–2211. [Google Scholar] [CrossRef]
- Liang, C.; Qiu, J.; Li, Z.; Li, C. Synthesis of Nanostructured Ceria, Zirconia and Ceria-Zirconia Solid Solutions Using an Ultrahigh Surface Area Carbon Material as a Template. Nanotechnology 2004, 15, 843–847. [Google Scholar] [CrossRef]
- Garcia, T.; Solsona, B.; Taylor, S.H. Nano-Crystalline Ceria Catalysts for the Abatement of Polycyclic Aromatic Hydrocarbons. Catal. Lett. 2005, 105, 183–189. [Google Scholar] [CrossRef]
- Spanier, J.E.; Robinson, R.D.; Zhang, F.; Chan, S.-W.; Herman, I.P. Size-Dependent Properties of CeO2−y Nanoparticles as Studied by Raman Scattering. Phys. Rev. B 2001, 64, 245407. [Google Scholar] [CrossRef]
- Kosacki, I.; Suzuki, T.; Anderson, H.U.; Colomban, P. Raman Scattering and Lattice Defects in Nanocrystalline CeO2 Thin Films. Solid State Ion. 2002, 149, 99–105. [Google Scholar] [CrossRef]
- Pigos, J.M.; Brooks, C.J.; Jacobs, G.; Davis, B.H. Low Temperature Water-Gas Shift: Characterization of Pt-Based ZrO2 Catalyst Promoted with Na Discovered by Combinatorial Methods. Appl. Catal. A Gen. 2007, 319, 47–57. [Google Scholar] [CrossRef]
- Maity, S.; Rana, M.; Srinivas, B.; Bej, S.; Murali Dhar, G.; Prasada Rao, T.S. Characterization and Evaluation of ZrO2 Supported Hydrotreating Catalysts. J. Mol. Catal. A Chem. 2000, 153, 121–127. [Google Scholar] [CrossRef]
- Galtayries, A.; Sporken, R.; Riga, J.; Blanchard, G.; Caudano, R. XPS Comparative Study of Ceria/Zirconia Mixed Oxides: Powders and Thin Film Characterisation. J. Electron Spectrosc. Rel. Phenom. 1998, 88–91, 951–956. [Google Scholar] [CrossRef]
- Aranda, A.; Aylón, E.; Solsona, B.; Murillo, R.; Mastral, A.M.; Sellick, D.R.; Agouram, S.; García, T.; Taylor, S.H. High Activity Mesoporous Copper Doped Cerium Oxide Catalysts for the Total Oxidation of Polyaromatic Hydrocarbon Pollutants. Chem. Commun. 2012, 48, 4704–4706. [Google Scholar] [CrossRef]
- Balcaen, V.; Roelant, R.; Poelman, H.; Poelman, D.; Marin, G.B. TAP Study on the Active Oxygen Species in the Total Oxidation of Propane over a CuO-CeO2/γ-Al2O3 catalyst. Catal. Today 2010, 157, 49–54. [Google Scholar] [CrossRef]
- Ntainjua, E.; Taylor, S.H. The Catalytic Total Oxidation of Polycyclic Aromatic Hydrocarbons. Top. Catal. 2009, 52, 528–541. [Google Scholar] [CrossRef]
- Aranda, A.; Agouram, S.; López, J.M.; Mastral, A.M.; Sellick, D.R.; Solsona, B.; Taylor, S.H.; García, T. Oxygen Defects: The Key Parameter Controlling the Activity and Selectivity of Mesoporous Copper-Doped Ceria for the Total Oxidation of Naphthalene. Appl. Catal. B Environ. 2012, 127, 77–88. [Google Scholar] [CrossRef]
Sample | Phases Present | Position of Ceria (111) Reflection/° | Average Crystallite Size/Å | Lattice Parameter/Å | Unit Cell Volume/Å3 |
---|---|---|---|---|---|
CeO2 | CeO2 | 28.5 | 78 | 5.450 | 161.879 |
Ce0.95Zr0.05Ox | CeO2 | 28.6 | 73 | 5.422 | 159.396 |
Ce0.90Zr0.10Ox | CeO2 | 28.7 | 58 | 5.366 | 154.508 |
Ce0.75Zr0.25Ox | CeO2, ZrO2 | 28.9 | 56 | 5.266 | 146.030 |
Ce0.50Zr0.50Ox | CeO2, ZrO2 | 28.9 | 65 | 5.236 | 143.651 |
ZrO2 | ZrO2 | - | 43 | 5.100 † | 132.651 |
Sample | BET Surface Area/m2 g−1 | Surface Area Normalized Propane Total Oxidation (×10−8)/mol s−1 m−2 g−1 | Raman Full Width Half Maximum/cm−1 | Surface Hydrogen Consumption/µmol H2 g−1 | Surface Area Normalized Hydrogen Consumption/µmol H2 m−2 |
---|---|---|---|---|---|
CeO2 | 62 | 0.36 | 30.9 | 2.28 | 1.23 |
Ce0.95Zr0.05Ox | 77 | 1.65 | 33.9 | 2.35 | 1.02 |
Ce0.90Zr0.10Ox | 79 | 1.15 | 38.8 | 2.71 | 1.14 |
Ce0.75Zr0.25Ox | 75 | 0.58 | 39.4 | 2.73 | 1.21 |
Ce0.50Zr0.50Ox | 71 | 0.52 | 40.1 | 2.74 | 1.29 |
ZrO2 | 58 | 0.00 | - | 1.25 | - |
Sample | Relative Concentration from EDX/at% | Relative Concentration from XPS/at% | Relative O Species from XPS/at% | |||
---|---|---|---|---|---|---|
Ce | Zr | Ce | Zr | Oα | Oβ | |
CeO2 | 100 | 0 | 100 | 0 | 54.1 | 45.9 |
Ce0.95Zr0.05Ox | 94.8 | 5.2 | 77.8 | 22.2 | 44.4 | 55.6 |
Ce0.90Zr0.10Ox | 89.6 | 10.4 | 71.5 | 28.5 | 48.1 | 51.9 |
Ce0.75Zr0.25Ox | 76.5 | 23.5 | 53.7 | 46.3 | 48.8 | 51.2 |
Ce0.50Zr0.50Ox | 55.5 | 44.5 | 41.1 | 58.9 | 53.3 | 46.7 |
ZrO2 | 0 | 100 | 0 | 100 | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, P.M.; Burnett, J.W.H.; Morgan, D.J.; Davies, T.E.; Taylor, S.H. Ceria–Zirconia Mixed Metal Oxides Prepared via Mechanochemical Grinding of Carbonates for the Total Oxidation of Propane and Naphthalene. Catalysts 2019, 9, 475. https://doi.org/10.3390/catal9050475
Shah PM, Burnett JWH, Morgan DJ, Davies TE, Taylor SH. Ceria–Zirconia Mixed Metal Oxides Prepared via Mechanochemical Grinding of Carbonates for the Total Oxidation of Propane and Naphthalene. Catalysts. 2019; 9(5):475. https://doi.org/10.3390/catal9050475
Chicago/Turabian StyleShah, Parag M., Joseph W. H. Burnett, David J. Morgan, Thomas E. Davies, and Stuart H. Taylor. 2019. "Ceria–Zirconia Mixed Metal Oxides Prepared via Mechanochemical Grinding of Carbonates for the Total Oxidation of Propane and Naphthalene" Catalysts 9, no. 5: 475. https://doi.org/10.3390/catal9050475
APA StyleShah, P. M., Burnett, J. W. H., Morgan, D. J., Davies, T. E., & Taylor, S. H. (2019). Ceria–Zirconia Mixed Metal Oxides Prepared via Mechanochemical Grinding of Carbonates for the Total Oxidation of Propane and Naphthalene. Catalysts, 9(5), 475. https://doi.org/10.3390/catal9050475