Influence of Chemical Modifications of Polyhydroxyalkanoate-Derived Fatty Acids on Their Antimicrobial Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Polyhydroxyalkanoates
2.2. Modification of PHA Monomers
2.3. Antimicrobial Testing
3. Materials and Methods
3.1. Synthesis of Polyhydroxyalkanoates
3.2. Modification of PHA Monomers
3.3. SFAE Synthesis
3.4. LC-MS
3.5. Antimicrobial Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Staroń, J.; Dąbrowski, J.M.; Cichoń, E.; Guzik, M. Lactose esters: Synthesis and biotechnological applications. Crit. Rev. Biotechnol. 2018, 38, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Hidayat, C.; Fitria, K.; Hastuti, P. Enzymatic synthesis of bio-surfactant fructose oleic ester using immobilized lipase on modified hydrophobic matrix in fluidized bed reactor. Agric. Agric. Sci. Procedia 2016, 9, 353–362. [Google Scholar] [CrossRef]
- Jeromin, G.E.; Zoor, A.; Stergiou, P.-Y.; Foukis, A.; Filippou, M.; Koukouritaki, M.; Parapouli, M.; Theodorou, L.G.; Hatziloukas, E.; Afendra, A.; et al. Enzymatic esterification of tapioca maltodextrin fatty acid ester. Carbohydr. Polym. 2001, 99, 2079–2090. [Google Scholar]
- Maag, H. Fatty acid derivatives: Important surfactants for household, cosmetic and industrial purposes. J. Am. Oil Chem. Soc. 1984, 61, 259–267. [Google Scholar] [CrossRef]
- Hill, K.; Rhode, O. Sugar-based surfactants for consumer products and technical applications. Lipid/Fett 1999, 101, 25–33. [Google Scholar] [CrossRef]
- Neta, N.D.A.S.; Santos, J.C.S.D.; Sancho, S.D.O.; Rodrigues, S.; Gonçalves, L.R.B.; Rodrigues, L.R.; Teixeira, J.A. Enzymatic synthesis of sugar esters and their potential as surface-active stabilizers of coconut milk emulsions. Food Hydrocoll. 2012, 27, 324–331. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.-H.; Gu, J.-Y.; Pu, W.-F.; Dong, Z.-M.; Liu, R. Study on the synthesis and properties of an eco-friendly sugar-based anionic–nonionic surfactant. RSC Adv. 2016, 6, 70165–70173. [Google Scholar] [CrossRef]
- El-Laithy, H.M.; Shoukry, O.; Mahran, L.G. Novel sugar esters proniosomes for transdermal delivery of vinpocetine: Preclinical and clinical studies. Eur. J. Pharm. Biopharm. 2011, 77, 43–55. [Google Scholar] [CrossRef]
- Szuts, A.; Szabó-Révész, P. Sucrose esters as natural surfactants in drug delivery systems—A mini-review. Int. J. Pharm. 2012, 433, 1–9. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, H.; Hao, T.; Li, S. In vitro antibacterial activities and mechanism of sugar fatty acid esters against five food-related bacteria. Food Chem. 2015, 187, 370–377. [Google Scholar] [CrossRef]
- Xiao, D.; Ye, R.; Davidson, P.M.; Hayes, D.G.; Golden, D.A.; Zhong, Q. Sucrose monolaurate improves the efficacy of sodium hypochlorite against escherichia coli O157: H7 on spinach. Int. J. Food Microbiol. 2011, 145, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Ferla, B.L.; Lay, L.; Poletti, L.; Russo, G.; Panza, L. Easy chemo-enzymatic synthesis of human milk trisaccharides from a common selectively protected lactose building block. J. Carbohydr. Chem. 2000, 19, 331–343. [Google Scholar] [CrossRef]
- Rencurosi, A.; Poletti, L.; Panza, L.; Lay, L. Improvement on lipase catalysed regioselective O-acylation of lactose: A convenient route to 2-O-fucosyllactose. J. Carbohydr. Chem. 2001, 20, 761–765. [Google Scholar] [CrossRef]
- Desbois, A.P. Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries. Recent Pat. Antiinfect. Drug Discov. 2012, 7, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Karlova, T.; Poláková, L.; Šmidrkal, J.; Filip, V. Antimicrobial effects of fatty acid fructose esters. Czech J. Food Sci. 2010, 28, 146–149. [Google Scholar] [CrossRef] [Green Version]
- Das, B.; Sarkar, S.; Sarkar, A.; Bhattacharjee, S.; Bhattacharjee, C. Recovery of whey proteins and lactose from dairy waste: A step towards green waste management. Process Saf. Environ. Prot. 2016, 101, 27–33. [Google Scholar] [CrossRef]
- Huang, C.B.; George, B.; Ebersole, J.L. Antimicrobial activity of n-6, n-7 and n-9 fatty acids and their esters for oral microorganisms. Arch. Oral Biol. 2010, 55, 555–560. [Google Scholar] [CrossRef] [Green Version]
- Blanchfield, J.; Toth, I. Lipid, Sugar and Liposaccharide based delivery systems 2. Curr. Med. Chem. 2012, 11, 2375–2382. [Google Scholar] [CrossRef]
- Zheng, C.J.; Yoo, J.S.; Lee, T.G.; Cho, H.Y.; Kim, Y.H.; Kim, W.G. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett. 2005, 579, 5157–5162. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.; Nobmann, P.; Henehan, G.; Bourke, P.; Dunne, J. Synthesis and antimicrobial evaluation of carbohydrate and polyhydroxylated non-carbohydrate fatty acid ester and ether derivatives. Carbohydr. Res. 2008, 343, 2557–2566. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T.; Katayama, S.; Matsubara, M.; Honda, Y.; Kuwahara, M. Antibacterial carbohydrate monoesters suppressing cell growth of streptococcus mutans in the presence of sucrose. Curr. Microbiol. 2000, 41, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Galbraith, H.; Miller, T.B. Effect of metal cations and PH on the antibacterial activity and uptake of long chain fatty acids. J. Appl. Bacteriol. 1973, 36, 635–646. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Lorente, G.; Palomo, J.M.; Cocca, J.; Mateo, C.; Moro, P.; Terreni, M.; Fernandez-Lafuente, R.; Guisan, J.M. Regio-selective deprotection of peracetylated sugars via lipase hydrolysis. Tetrahedron 2003, 59, 5705–5711. [Google Scholar] [CrossRef]
- Dembitsky, V.M.; Srebnik, M. Natural halogenated fatty acids: Their analogues and derivatives. Prog. Lipid Res. 2002, 41, 315–367. [Google Scholar] [CrossRef]
- Andreu, C.; Marcel, Æ.; Varea, T.; Diaz, D.; Asensio, G. The introduction of fluorine atoms or trifluoromethyl groups in short cationic peptides enhances their antimicrobial activity. Bioorgan. Med. Chem. 2006, 14, 6971–6978. [Google Scholar]
- Hiyama, T.; Yamamoto, H. Biologically active organofluorine compounds. In Organofluorine Compounds; Springer: Berlin/Heidelberg, Germany, 2012; pp. 137–182. [Google Scholar]
- Isanbor, C.; Hagan, D.O. Fluorine in medicinal chemistry: A review of anti-cancer agents §. J. Fluor. Chem. 2006, 127, 303–319. [Google Scholar] [CrossRef]
- Cheeseman, K.H.; Albano, E.F.; Tomasi, A.; Slater, T.F. Biochemical studies on the metabolic activation of halogenated alkanes. Environ. Health Perspect. 1985, 64, 85–101. [Google Scholar] [CrossRef]
- Belli, W.A.; Buckley, D.H.; Marquis, R.E. Weak acid effects and fluoride inhibition of glycolysis by streptococcus mutans GS-5. Can. J. Microbiol. 1992, 41, 785–791. [Google Scholar] [CrossRef]
- Suriyamongkol, P.; Weselake, R.; Narine, S.; Moloney, M.; Shah, S. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants—A review. Biotechnol. Adv. 2007, 25, 148–175. [Google Scholar] [CrossRef]
- Abe, H.; Doi, Y. Side-Chain effect of second monomer units on crystalline morphology thermal properties and enzymatic degradability for random copolyesters of (R) -3-hydroxybutyric acid with (R) -3-hydroxyalkanoic acids. Biomacromolecules 2002, 3, 133–138. [Google Scholar] [CrossRef]
- Madison, L.; Huisman, G. Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to plastic. Microbiol. Mol. Biol. Rev. 1999, 63, 21–53. [Google Scholar] [PubMed]
- O’Connor, S.; Szwej, E.; Nikodinovic-Runic, J.; O’Connor, A.; Byrne, A.T.; Devocelle, M.; O’Donovan, N.; Gallagher, W.M.; Babu, R.; Kenny, S.T.; et al. The anti-cancer activity of a cationic anti-microbial peptide derived from monomers of polyhydroxyalkanoate. Biomaterials 2013, 34, 2710–2718. [Google Scholar] [CrossRef] [PubMed]
- Radivojevic, J.; Skaro, S.; Senerovic, L.; Vasiljevic, B.; Guzik, M.; Kenny, S.T.; Maslak, V.; Nikodinovic-Runic, J.; O’Connor, K.E.; O’Connor, K. Polyhydroxyalkanoate-based 3-hydroxyoctanoic acid and its derivatives as a platform of bioactive compounds. Appl. Microbiol. Biotechnol. 2015, 100, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Constantin, M.; Simionescu, C.I.; Carpov, A.; Samain, E.; Driguez, H. Chemical modification of poly (hydroxyalkanoates). Copolymers bearing pendant sugars. Macromol. Rapid Commun. 1999, 94, 91–94. [Google Scholar] [CrossRef]
- Walsh, M.K.; Bombyk, R.A.; Wagh, A.; Bingham, A.; Berreau, L.M. Synthesis of lactose monolaurate as influenced by various lipases and solvents. J. Mol. Catal. B Enzym. 2009, 60, 171–177. [Google Scholar] [CrossRef]
- Plou, F.J.; Cruces, M.A.; Ferrer, M.; Fuentes, G.; Pastor, E.; Bernabé, M.; Christensen, M.; Comelles, F.; Parra, J.L.; Ballesteros, A. Enzymatic acylation of di- and trisaccharides with fatty acids: Choosing the appropriate enzyme, support and solvent. J. Biotechnol. 2002, 96, 55–66. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI); Weinstein, M.P. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 9th ed.; Clinical and Laboratory Standards Institute: Wayne, NY, USA, 2012. [Google Scholar]
- Kümmerer, K. Antibiotics in the aquatic environment—A. review—Part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef]
- Wagh, A.; Walsh, M.K.; Martini, S. Effect of lactose monolaurate and high intensity ultrasound on crystallization behavior of anhydrous milk fat. J. Am. Oil Chem. Soc. 2012, 90, 977–987. [Google Scholar] [CrossRef]
- Lucarini, S.; Fagioli, L.; Campana, R.; Cole, H.; Duranti, A.; Baffone, W.; Vllasaliu, D.; Casettari, L. Unsaturated fatty acids lactose esters: cytotoxicity, permeability enhancement and antimicrobial activity. Eur. J. Pharm. Biopharm. 2016, 107, 88–96. [Google Scholar] [CrossRef]
- Bills, G.; Cueva, C.; Moreno-arribas, M.V.; Martı, P.J.; Vicente, M.F.; Basilio, A.; Rodrı, J.M. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Res. Microbiol. 2010, 161, 372–382. [Google Scholar]
- Pohl, C.H.; Kock, J.L.F.; Thibane, V.S. Antifungal free fatty acids: A review antifungal free fatty acids: A review. Sci. Microb. Pathog. Curr. Res. Technol. Adv. 2011, 1, 61–71. [Google Scholar]
- Sandoval, Á.; Arias-Barrau, E.; Bermejo, F.; Cañedo, L.; Naharro, G.; Olivera, E.R.; Luengo, J.M. Production of 3-hydroxy-n-phenylalkanoic acids by a genetically engineered strain of Pseudomonas putida. Appl. Microbiol. Biotechnol. 2005, 67, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, M.; Soliveri, J.; Plou, F.J.; López-Cortés, N.; Reyes-Duarte, D.; Christensen, M.; Copa-Patiño, J.L.; Ballesteros, A. Synthesis of sugar esters in solvent mixtures by lipases from Thermomyces lanuginosus and Candida antarctica B, and their antimicrobial properties. Enzyme Microb. Technol. 2005, 36, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Sofińska, K.; Barbasz, J.; Witko, T.; Dryzek, J.; Haraźna, K.; Witko, M.; Kryściak-Czerwenka, J.; Guzik, M. Structural, Topographical, and Mechanical characteristics of purified polyhydroxyoctanoate polymer. J. Appl. Polym. Sci. 2019, 136, 47192. [Google Scholar] [CrossRef]
- Siebenhaller, S.; Gentes, J.; Infantes, A.; Muhle-Goll, C.; Kirschhöfer, F.; Brenner-Weiß, G.; Ochsenreither, K.; Syldatk, C. Lipase-Catalyzed Synthesis of Sugar Esters in Honey and Agave Syrup. Front. Chem. 2018, 6, 1–9. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Meletiadis, J.; Mouton, J.W.; Lagrou, K.; Hamal, P.; Guinea, J. Subcommittee on Antifungal Susceptibility Testing of the ESCMID European Committee for Antimicrobial Susceptibility Testing. 2017 EUCAST Definitive Document E.DEF 9.3.1: Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Conidia Forming Moulds. Available online: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/EUCAST_E_Def_9_3_1_Mould_testing__definitive.pdf (accessed on 25 April 2019).
Compound Number: | Conversion [%]: |
---|---|
15 | 100 |
10,11 | 48.5 |
7,8 | 100 |
13,14 | n.c. |
26 | 42.1 * |
27,28 | 85 * |
29,30 | n.c. |
31 | 43.3 * |
32,33 | 78.7 * |
34,35 | n.c. |
Compound | Precursor Ion (m/z) | Product Ions (m/z) | Collision Energies (eV) | Retention Time (min) |
---|---|---|---|---|
1 | 157 | 157.1 | 5 | 1.6 |
3 | 173 | 173.1, 59 | 5 | 1.9 |
4 | 145 | 145.1, 59 | 5 | 1.8 |
5 | 191 | 114.8, 190.6 | 5 | 1.6 |
7 | 207 | 176.9, 206.9 | 5 | 1.6 |
8 | 179 | n.c | - | - |
12 | 255 | 255 | 5 | 2.3 |
13 | 227 | 226.7, 162.9 | 5 | 1.9 |
26 | 319 | 318.5, 228.9 | 5 | 1.7 |
27 | 335 | 334.7, 172.8, 58.7 | 10 | 1.4 |
28 | 307 | n.c. * | - | - |
29 | 417 | 417.1 | 25 | 1.6 |
30 | 389 | n.c | - | - |
31 | 339 | 338.9 | 5 | 1.7 |
33 | 356 | 354.9 | 5 | 1.4 |
32 | n.c. | n.d. * | - | - |
Ciprofloxacin/Fluxonazole | [34,35] | [32,33] | [27,28] | [31] | [26] | [10,11] | [7,8] | [3,4] | [5] | [1] | Compound [ug mL−1]: |
---|---|---|---|---|---|---|---|---|---|---|---|
4 | 2500 | >5000 | 2500 | 5000 | 5000 | 2500 | 2500 | 1250 | 1250 | 2500 | Staphylococcus aureus NCTC 4163 |
0.5 | 5000 | >5000 | 1250 | >5000 | 5000 | 2500 | 2500 | 2500 | 1250 | 2500 | Staphylococcus aureus ATCC 6538 |
0.5 | >5000 | >5000 | >5000 | >5000 | 5000 | 2500 | 2500 | 2500 | 1250 | 2500 | Staphylococcus epidermidis ATCC 12228 |
0.5 | 5000 | >5000 | 1250 | >5000 | 5000 | 2500 | 1250 | 2500 | 1250 | 2500 | Staphylococcus epidermidis RP 62A |
0.5 | >5000 | >5000 | >5000 | >5000 | 5000 | 2500 | 2500 | 2500 | 2500 | 2500 | Enterococcus hirae ATCC 10541 |
0.5 | >5000 | >5000 | >5000 | >5000 | 2500 | 2500 | 2500 | 1250 | 1250 | 2500 | Bacillus cereus ATCC 11778 |
0.5 | >5000 | >5000 | >5000 | >5000 | 5000 | 2500 | 2500 | 2500 | 1250 | 2500 | Bacillus subtilis ATCC 6633 |
0.5 | >5000 | >5000 | >5000 | >5000 | >5000 | 2500 | 5000 | 5000 | 2500 | 5000 | Escherichia coli ATCC 25922 |
0.5 | >5000 | >5000 | >5000 | >5000 | >5000 | 5000 | 5000 | 5000 | 2500 | 5000 | Pseudomonas aeruginosa ATCC 27853 |
0.5 | >5000 | >5000 | >5000 | >5000 | 5000 | 2500 | 2500 | 5000 | 2500 | 2500 | Salmonella enterica subsp. fnterica CIP 108115 |
0.5 | >5000 | >5000 | 5000 | >5000 | 5000 | 2500 | 1250 | 2500 | 2500 | 2500 | Listeria monocytogenes |
0.5 | >5000 | >5000 | >5000 | >5000 | 313 | 5000 | >5000 | >5000 | 625 | 156 | Candida parapsilosis ATCC 22019 |
0.5 | >5000 | >5000 | >5000 | >5000 | 625 | 5000 | >5000 | 2500 | 1250 | 313 | Candida albicans ATCC 90028 |
0.5 | >5000 | >5000 | >5000 | >5000 | 625 | >5000 | >5000 | 5000 | 1250 | 156 | Candida krusei ATCC 6258 |
0.5 | >5000 | >5000 | >5000 | >5000 | 1250 | 5000 | >5000 | 5000 | 1250 | 156 | Candida albicans ATCC 10231 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Snoch, W.; Stępień, K.; Prajsnar, J.; Staroń, J.; Szaleniec, M.; Guzik, M. Influence of Chemical Modifications of Polyhydroxyalkanoate-Derived Fatty Acids on Their Antimicrobial Properties. Catalysts 2019, 9, 510. https://doi.org/10.3390/catal9060510
Snoch W, Stępień K, Prajsnar J, Staroń J, Szaleniec M, Guzik M. Influence of Chemical Modifications of Polyhydroxyalkanoate-Derived Fatty Acids on Their Antimicrobial Properties. Catalysts. 2019; 9(6):510. https://doi.org/10.3390/catal9060510
Chicago/Turabian StyleSnoch, Wojciech, Karolina Stępień, Justyna Prajsnar, Jakub Staroń, Maciej Szaleniec, and Maciej Guzik. 2019. "Influence of Chemical Modifications of Polyhydroxyalkanoate-Derived Fatty Acids on Their Antimicrobial Properties" Catalysts 9, no. 6: 510. https://doi.org/10.3390/catal9060510
APA StyleSnoch, W., Stępień, K., Prajsnar, J., Staroń, J., Szaleniec, M., & Guzik, M. (2019). Influence of Chemical Modifications of Polyhydroxyalkanoate-Derived Fatty Acids on Their Antimicrobial Properties. Catalysts, 9(6), 510. https://doi.org/10.3390/catal9060510