Facile Synthesis of Heterojunctioned ZnO/Bi2S3 Nanocomposites for Enhanced Photocatalytic Reduction of Aqueous Cr(VI) under Visible-Light Irradiation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of ZnO/Bi2S3 Photocatalysts Composites
2.2. Photoreduction of Aqueous Cr(VI) Under Visible-Light Irradiation
2.3. Mechanism for Photocatalytic Cr(VI) Reduction
3. Experimental Section
3.1. Preparation of the Photocatalysts
3.2. Characterization
3.3. Photocatalytic Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Fan, Q.; Wang, R.; Li, G.; Fan, T.; Zhao, H.; Rong, C. Highly efficient photocatalytic reduction of Cr(VI) by bismuth hollow nanospheres. Catal. Commun. 2013, 42, 14–19. [Google Scholar]
- Fırlak, M.; Kahrman, M.V.; Yetimoğlu, E.K. Removal of Ag(I) from Aqueous Solutions by Thiol-ene-Based Hydrogel and Its Application to Radiographic Films. Water Air Soil Pollut. 2014, 225, 1843. [Google Scholar] [CrossRef]
- Daneshvar, N.; Salari, D.; Aber, S. Chromium adsorption and Cr(VI) reduction to trivalent chromium in aqueous solutions by soya cake. J. Hazard. Mater. 2002, 94, 49–61. [Google Scholar] [CrossRef]
- Maheshwari, U.; Gupta, S. Removal of Cr(VI) from wastewater using activated neem bark in a fixed-bed column: Interference of other ions and kinetic modelling studies. Desalin. Water Treat. 2016, 57, 8514–8525. [Google Scholar] [CrossRef]
- Patel, H.A.; Karadas, F.; Byun, J.; Park, J.; Yavuz, C.T. Highly stable nanoporous sulfur-bridged covalent organic polymers for carbon dioxide removal. Adv. Funct. Mater. 2013, 23, 2270–2276. [Google Scholar] [CrossRef]
- Wang, L.; Zeng, T.; Liao, G.; Cheng, Q.; Pan, Z. Syntheses, structures and catalytic mechanisms of three new MOFs for aqueous Cr(VI) reduction and dye degradation under UV light. Polyhedron 2018, 157, 152–162. [Google Scholar] [CrossRef]
- Marinho, B.A.; Cristóvão, R.O.; Djellabi, R.; Loureiro, J.M.; Rui, A.R.B.; Vilar, V.J.P. Photocatalytic reduction of Cr(VI) over TiO2-coated cellulose acetate monolithic structures using solar light. Appl. Catal. B Environ. 2017, 203, 18–30. [Google Scholar] [CrossRef]
- Megan, G.; Yu, P.C.; Hug, S.J.; Barbara, S. Role of dissolved organic matter composition on the photoreduction of Cr(VI) to Cr(III) in the presence of iron. Environ. Sci. Technol. 2003, 37, 4403–4409. [Google Scholar]
- Wang, X.; Pehkonen, S.O.; Ray, A.K. Removal of Aqueous Cr(VI) by a Combination of Photocatalytic Reduction and Coprecipitation. Ind. Eng. Chem. Res. 2004, 43, 1665–1672. [Google Scholar] [CrossRef]
- Chanchal, M.; Mainak, G.; Jaya, P.; Anindita, R.; Jayasmita, J.; Tarasankar, P. Morphology controlled synthesis of SnS2 nanomaterial for promoting photocatalytic reduction of aqueous Cr(VI) under visible light. Langmuir 2014, 30, 4157–4164. [Google Scholar]
- Wang, L.; Nan, W.; Zhu, L.; Yu, H.; Tang, H. Photocatalytic reduction of Cr(VI) over different TiO2 photocatalysts and the effects of dissolved organic species. J. Hazard. Mater. 2008, 152, 93–99. [Google Scholar] [CrossRef]
- Rengaraj, S.; Venkataraj, S.; Yeon, J.W.; Kim, Y.; Li, X.Z.; Pang, G.K.H. Preparation, characterization and application of Nd–TiO2 photocatalyst for the reduction of Cr(VI) under UV light illumination. Appl. Catal. B Environ. 2007, 77, 157–165. [Google Scholar] [CrossRef]
- Ge, Z.H.; Zhang, B.P.; Yu, Z.X.; Jiang, B.B. Controllable synthesis: Bi2S3 nanostructure powders and highly textured polycrystals. Crystengcomm 2012, 14, 2283–2288. [Google Scholar] [CrossRef]
- Liu, Z.; Peng, S.; Xie, Q.; Hu, Z.; Yang, Y.; Zhang, S.; Qian, Y. Large-Scale Synthesis of Ultralong Bi2S3 Nanoribbons via a Solvothermal Process. Adv. Mater. 2010, 15, 936–940. [Google Scholar] [CrossRef]
- Sarkar, A.; Ghosh, A.B.; Saha, N.; Srivastava, D.N.; Paul, P.; Adhikary, B. Enhanced photocatalytic performance of morphologically tuned Bi2S3 NPs in the degradation of organic pollutants under visible light irradiation. J. Colloid Interface Sci. 2016, 483, 9–59. [Google Scholar] [CrossRef]
- Hu, E.; Gao, X.; Etogo, A.; Xie, Y.; Zhong, Y.; Yong, H. Controllable one-pot synthesis of various one-dimensional Bi2S3 nanostructures and their enhanced visible-light-driven photocatalytic reduction of Cr(VI). J. Alloy. Compd. 2014, 611, 335–340. [Google Scholar] [CrossRef]
- Ding, Y.H.; Zhang, X.L.; Zhang, N.; Zhang, J.Y.; Zhang, R.; Liu, Y.F.; Fang, Y.Z. A visible-light driven Bi2S3@ZIF-8 core-shell heterostructure and synergistic photocatalysis mechanism. Dalton Trans. 2017, 47, 684–692. [Google Scholar] [CrossRef]
- Sun, H.; Jiang, Z.; Wu, D.; Ye, L.; Wang, T.; Wang, B.; An, T.; Wong, P.K. Defect-type-dependent near-infrared-driven photocatalytic bacterial inactivation by defective Bi2S3 nanorods. Chemsuschem 2019, 12, 890–897. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, G.; Guo, Q.; Rong, L.; Fu, H. One-step synthesis of Hierarchical Bi2S3 nanoflower\In2S3 nanosheet composite with efficient visible light photocatalytic activity. Crystengcomm 2015, 17, 8720–8727. [Google Scholar] [CrossRef]
- Vattikuti, S.V.P.; Shim, J.; Chan, B. 1D Bi2S3 nanorod/2D e-WS2 nanosheet heterojunction photocatalyst for enhanced photocatalytic activity. J. Solid State Chem. 2018, 258, 526–535. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, G.; Mao, G.; Rong, L.; Xiao, Y.; Han, T. Facile synthesis of well-dispersed Bi2S3 nanoparticles on reduced graphene oxide and enhanced photocatalytic activity. Appl. Surf. Sci. 2016, 378, 231–238. [Google Scholar] [CrossRef]
- Ge, Z.H.; Qin, P.; He, D.; Chong, X.; Feng, D.; Ji, Y.H.; Feng, J.; He, J. Highly enhanced thermoelectric properties of Bi/Bi2S3 nano composites. ACS Appl. Mater. Interfaces 2017, 9, 4828–4834. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, J.; Chu, W.; Cahen, D.; He, T. Synergistic effect of charge generation and separation in epitaxially grown BiOCl/Bi2S3 nano-heterostructure. ACS Appl. Mater. Interfaces 2018, 10, 15304–15313. [Google Scholar] [CrossRef]
- Yang, L.; Sun, W.; Luo, S.; Yan, L. White fungus-like mesoporous Bi2S3 ball/TiO2 heterojunction with high photocatalytic efficiency in purifying 2,4-dichlorophenoxyacetic acid/Cr(VI) contaminated water. Appl. Catal. B Environ. 2014, 156, 25–34. [Google Scholar] [CrossRef]
- Rauf, A.; Sher Shah, M.S.A.; Choi, G.H.; Humayoun, U.B.; Yoon, D.H.; Bae, J.W.; Park, J.; Kim, W.J.; Yoo, P.J. Facile synthesis of hierarchically structured Bi2S3/Bi2WO6 photocatalysts for highly efficient reduction of Cr(VI). ACS Sustain. Chem. Eng. 2015, 3, 2847–2855. [Google Scholar] [CrossRef]
- Jing, C.; Benyan, X.; Haili, L.; Bangde, L.; Shifu, C. Novel heterostructured Bi2S3/BiOI photocatalyst: Facile preparation, characterization and visible light photocatalytic performance. Dalton Trans. 2012, 41, 11482–11490. [Google Scholar]
- Senthilvelan, S.; Chandraboss, V.L.; Kamalakkannan, J.; Prabha, S. An Efficient Removal of Methyl Violet from Aqueous Solution by AC-Bi/ZnO Nanocomposite Material. RSC Adv. 2015, 5, 25857–25869. [Google Scholar]
- Yang, L.; Xu, C.; Wan, F.; He, H.; Gu, H.; Xiong, J. Synthesis of RGO/BiOI/ZnO composites with efficient photocatalytic reduction of aqueous Cr(VI) under visible-light irradiation. Mater. Res. Bull. 2019, 112, 154–158. [Google Scholar] [CrossRef]
- Subramanian, B.; Meenakshisundaram, S. The simple, template free synthesis of a Bi2S3-ZnO heterostructure and its superior photocatalytic activity under UV-A light. Dalton Trans. 2013, 42, 5338–5347. [Google Scholar]
- Zheng, L.; Deng, J.; Wang, L.; Wang, L.; Teng, F.; Tong, Z. Toluene and ethanol sensing performances of pristine and PdO-decorated flower-like ZnO structures. Sens. Actuators B 2013, 176, 323–329. [Google Scholar]
- Shu, F.W.; Feng, G.; Zhong, S.Y.; Meng, K.L.; Zhou, G.J.; Wen, G.Z. Facile synthesis of silica-coated Bi2S3 nanorods and hollow silica nanotubes. J. Cryst. Growth 2015, 282, 79–84. [Google Scholar]
- Hang, X.; Zhang, J.; Yu, J.Q.; Zhang, Y.; Cui, Z.X.; Sun, Y.; Hou, B. Fabrication of InVO4/AgVO3 heterojunctions with enhanced photocatalytic antifouling efficiency under visible-light. Appl. Catal. B Environ. 2018, 220, 57–66. [Google Scholar]
- Yu, J.; Jiang, C.; Guan, Q.; Ning, P.; Gu, J.; Chen, Q.; Zhang, J.; Miao, R. Enhanced removal of Cr(VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth. Chemosphere 2017, 195, 632–640. [Google Scholar] [CrossRef]
- Wang, M.; Yang, L.; Yuan, J.; He, L.; Song, Y.; Zhang, H.; Zhang, Z.; Fang, S. Heterostructured Bi2S3@NH2-MIL-125(Ti) nanocomposite as a bifunctional photocatalyst for Cr(VI) reduction and rhodamine B degradation under visible light. RSC Adv. 2018, 8, 12459–12470. [Google Scholar] [CrossRef]
- Yuan, X.; Jing, Q.; Chen, J.; Li, L. Photocatalytic Cr(VI) reduction by mixed metal oxide derived from ZnAl layered double hydroxide. Appl. Clay Sci. 2017, 143, 168–174. [Google Scholar] [CrossRef]
- Yuan, X.Y.; Cheng, X.; Jing, Q.Y.; Niu, J.W.; Peng, D.; Feng, Z.J.; Wu, X. ZnO/ZnAl2O4 Nanocomposite with 3D Sphere-Like Hierarchical Structure for Photocatalytic Reduction of Aqueous Cr(VI). Materials 2018, 11, 1624. [Google Scholar] [CrossRef]
- Wang, X.; Rong, L.; Kang, W. Synthesis of ZnO@ZnS–Bi2S3 core–shell nanorod grown on reduced graphene oxide sheets and its enhanced photocatalytic performance. J. Med. Chem. A 2014, 2, 8304–8313. [Google Scholar]
- Duan, Y.; Stinespring, C.D.; Chorpening, B. Electronic Structures, Bonding Configurations, and Band-Gap-Opening Properties of Graphene Binding with Low-Concentration Fluorine. Chemistryopen 2015, 4, 642–650. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, L.; Cheng, H.; Zhu, Y. Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl. Catal. B Environ. 2011, 101, 382–387. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, S.; Umar, A.; Kansal, S.K. Bismuth Sulphide (Bi2S3) Nanotubes as an Efficient Photocatalyst for Methylene Blue Dye Degradation. Nanosci. Nanotechnol. Lett. 2016, 8, 266–272. [Google Scholar] [CrossRef]
- Chalermchai, P.; Somchai, T.; Titipun, T. Environmentally benign synthesis of Bi2S3 quantum dot using microwave-assisted approach. J. Nanosci. Nanotechnol. 2013, 13, 2189–2192. [Google Scholar]
- Nan, W.; Zhu, L.; Deng, K.; She, Y.; Yanmin, Y.U.; Tang, H. Visible light photocatalytic reduction of Cr(VI) on TiO2 in situ modified with small molecular weight organic acids. Appl. Catal. 2010, 95, 400–407. [Google Scholar]
- Barrera, C.E. A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J. Hazard. Mater. 2012, 223, 1–12. [Google Scholar] [CrossRef]
- Yuan, X.Y.; Feng, Z.; Zhao, J.; Niu, J.; Liu, J.; Peng, D.; Cheng, X. Significantly enhanced aqueous Cr(VI) removal performance of Bi/ZnO nanocomposites via synergistic effect of adsorption and SPR-promoted visible light photoreduction. Catalysts 2018, 8, 426. [Google Scholar] [CrossRef]
- Bhati, A.; Anand, S.R.; Saini, D.; Sonkar, S.K. Sunlight-induced photoreduction of Cr(VI) to Cr(III) in wastewater by nitrogen-phosphorus-doped carbon dots. NPJ Clean Water 2019, 2, 12. [Google Scholar] [CrossRef]
- Yuan, X.; Chao, Z.; Jing, Q.; Qi, T.; Mu, Y.; Du, A. Facile Synthesis of g-C3N4Nanosheets/ZnO Nanocomposites with Enhanced Photocatalytic Activity in Reduction of Aqueous Chromium(VI) under Visible Light. Nanomaterials 2016, 6, 173. [Google Scholar] [CrossRef]
- Li, B.; Lai, C.; Zeng, G.; Qin, L.; Yi, H.; Huang, D.; Zhou, C.; Liu, X.; Cheng, M.; Xu, P. Facile hydrothermal synthesis of Z-scheme Bi2Fe4O9/Bi2WO6 heterojunction photocatalyst with enhanced visible light photocatalytic activity. ACS Appl. Mater. Interfaces 2018, 10, 18824–18836. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Wu, X.; Feng, Z.; Jia, W.; Zheng, X.; Li, C. Facile Synthesis of Heterojunctioned ZnO/Bi2S3 Nanocomposites for Enhanced Photocatalytic Reduction of Aqueous Cr(VI) under Visible-Light Irradiation. Catalysts 2019, 9, 624. https://doi.org/10.3390/catal9070624
Yuan X, Wu X, Feng Z, Jia W, Zheng X, Li C. Facile Synthesis of Heterojunctioned ZnO/Bi2S3 Nanocomposites for Enhanced Photocatalytic Reduction of Aqueous Cr(VI) under Visible-Light Irradiation. Catalysts. 2019; 9(7):624. https://doi.org/10.3390/catal9070624
Chicago/Turabian StyleYuan, Xiaoya, Xue Wu, Zijuan Feng, Wen Jia, Xuxu Zheng, and Chuanqiang Li. 2019. "Facile Synthesis of Heterojunctioned ZnO/Bi2S3 Nanocomposites for Enhanced Photocatalytic Reduction of Aqueous Cr(VI) under Visible-Light Irradiation" Catalysts 9, no. 7: 624. https://doi.org/10.3390/catal9070624
APA StyleYuan, X., Wu, X., Feng, Z., Jia, W., Zheng, X., & Li, C. (2019). Facile Synthesis of Heterojunctioned ZnO/Bi2S3 Nanocomposites for Enhanced Photocatalytic Reduction of Aqueous Cr(VI) under Visible-Light Irradiation. Catalysts, 9(7), 624. https://doi.org/10.3390/catal9070624