Functional Autodisplay of Phenolic Acid Decarboxylase using a GDSL Autotransporter on Escherichia coli for Efficient Catalysis of 4-Hydroxycinnamic Acids to Vinylphenol Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Construction of the Vector System for Phenolic Acid Decarboxylase Autodisplay on Escherichia coli
2.2. Expression and Localization of the Autodisplayed Phenolic Acid Decarboxylase on E. coli
2.3. Bioconversion of Ferulic Acid by Whole-Cell Catalysis of Expressing E. coli
3. Materials and Methods
3.1. Bacterial Strains, Vectors, and Chemicals
3.2. Construction of Plasmids for Cell Surface Display of Phenolic Acid Decarboxylase (BLPAD)
3.3. Expression and Membrane Fraction Isolation
3.4. Protease Accessibility
3.5. Bioconversion of Ferulic Acid by Whole-Cell Catalysis of Expressing E. coli
3.6. Phenolic Acid Decarboxylase Activity Assay
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Mishra, S.; Sachan, A.; Vidyarthi, A.S.; Sachan, S.G. Transformation of ferulic acid to 4-vinyl guaiacol as a major metabolite: A microbial approach. Rev. Environ. Sci. Biotechnol. 2014, 13, 377–385. [Google Scholar] [CrossRef]
- Tinikul, R.; Chenprakhon, P.; Maenpuen, S.; Chaiyen, P. Biotransformation of plant-derived phenolic acids. Biotechnol. J. 2018, 13, 1700632. [Google Scholar] [CrossRef] [PubMed]
- Kodaira, K.; Onishi, Y.; Ito, K. An oligomerization of 2-methoxy- 4-vinylphenol. Makromol. Chem. Rapid. Commun. 1980, 1, 427–431. [Google Scholar] [CrossRef]
- Takeshima, H.; Satoh, K.; Karnigaito, M. Bio-based functional styrene monomers derived from naturally occurring ferulic acid for poly (vinylcatechol) and poly (vinylguaiacol) via controlled radical polymerization. Macromolecules 2017, 50, 4206–4216. [Google Scholar] [CrossRef]
- Fufuya, T.; Miura, M.; Kino, K. A coenzyme-independent decarboxylase/oxygenase cascade for the efficient synthesis of vanillin. ChemBioChem 2014, 15, 2248. [Google Scholar]
- Tang, J.; Shi, L.; Li, L.; Long, L.; Ding, S. Expression and characterization of a 9-cis-epoxycarotenoid dioxygenase from Serratia sp. ATCC 39006 capable of biotransforming isoeugenol and 4-vinylguaiacol to vanillin. Biotechnol. Rep. 2018, 18, e00253. [Google Scholar] [CrossRef]
- Ni, J.; Wu, Y.T.; Tao, F.; Peng, Y.; Xu, P. A coenzyme-free biocatalyst for the value-added utilization of lignin-derived aromatics. J. Am. Chem. Soc. 2018, 140, 16001–16005. [Google Scholar] [CrossRef]
- Yang, J.; Wang, S.; Lorrain, M.J.; Rho, D.; Abokitse, K.; Lau, P.C. Bioproduction of lauryl lactone and 4-vinyl guaiacol as value added chemicals in two-phase biotransformation systems. Appl. Microbiol. Biotechnol. 2009, 84, 867–876. [Google Scholar] [CrossRef]
- Ben-Bassat, A.; Breinig, S.; Crum, G.A.; Huang, L.; Altenbaugh, A.B.; Rizzo, N.; Trotman, RJ.; Vannelli, T.; Sariaslani, F.S.; Haynie, S.L. Preparation of 4-vinylphenol using pHCA decarboxylase in a two solvent medium. Org. Process. Res. Dev. 2007, 11, 278–285. [Google Scholar] [CrossRef]
- Salgado, J.M.; Rodriguez-Solana, R.; Curiel, J.A.; de las Rivas, B.; Munoz, R.; Dominguez, J.M. Production of vinyl derivatives from alkaline hydrolysates of corn cobs by recombinant Escherichia coli containing the phenolic acid decarboxylase from Lactobacillus plantarum CECT 748T. Bioresour. Technol. 2012, 117, 274–285. [Google Scholar] [CrossRef]
- Jung, D.H.; Choi, W.; Choi, K.Y.; Jung, E.; Yun, H.; Kazlauskas, R.J.; Kim, B.G. Bioconversion of p-coumaric acid to p-hydroxystyrene using phenolic acid decarboxylase from B. amyloliquefaciens in biphasic reaction system. Appl. Microbiol. Biotechnol. 2013, 97, 1501–1511. [Google Scholar] [CrossRef] [PubMed]
- Licandro-Seraut, H.; Roussel, C.; Perpetuini, G.; Gervais, P.; Cavin, J.F. Sensitivity to vinyl phenol derivatives produced by phenolic acid decarboxylase activity in Escherichia coli and several food-borne Gram-negative species. Appl. Microbiol. Biotechnol. 2013, 97, 7853–7864. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Chen, R.R. Accelerating whole-cell biocatalysis by reducing outer membrane permeability barrier. Biotechnol. Bioeng. 2004, 87, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Reetz, M.T. Biocatalysis in organic chemistry and biotechnology: Past, present, and future. J. Am. Chem. Soc. 2013, 135, 12480–12496. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.R.; Khera, E.; Wen, F. Engineering novel and improved biocatalysts by cell surface display. Ind. Eng. Chem. Res. 2015, 54, 4021–4032. [Google Scholar] [CrossRef] [PubMed]
- Schuurmann, J.; Quehl, P.; Festel, G.; Jose, J. Bacterial whole-cell biocatalysts by surface display of enzymes: Toward industrial application. Appl. Microbiol. Biotechnol. 2014, 98, 8031–8046. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Kondo, A. Cell surface engineering of industrial microorganisms for biorefining applications. Biotechnol. Adv. 2015, 33, 403–1411. [Google Scholar] [CrossRef] [PubMed]
- He, W.W.; Jiang, B.; Mu, W.M.; Zhang, T. Production of D-Allulose with D-Psicose 3-epimerase expressed and displayed on the surface of Bacillus subtilis spores. J. Agr. Food. Chem. 2016, 64, 7201–7207. [Google Scholar] [CrossRef]
- Tozakidis, I.E.P.; Brossette, T.; Lenz, F.; Maas, R.M.; Jose, J. Proof of concept for the simplified breakdown of cellulose by combining Pseudomonas putida strains with surface displayed thermophilic endocellulase, exocellulase and beta-glucosidase. Microb. Cell Fact. 2016, 15, 103. [Google Scholar] [CrossRef]
- Park, D.M.; Brewer, A.; Reed, D.W.; Lammers, L.N.; Jiao, Y.Q. Recovery of rare earth elements from low-grade feedstock leachates using engineered bacteria. Environ. Sci. Technol. 2017, 51, 13471–13480. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J.; Fan, J.; Wang, Z.Y.; Li, L. Detection of catechol using an electrochemical biosensor based on engineered Escherichia coli cells that surface-display laccase. Anal. Chim. Acta. 2018, 1009, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Maruthamuthu, M.K.; Hong, J.; Arulsamy, K.; Somasundaram, S.; Hong, S.; Choe, W.S.; Yoo, I.K. Development of bisphenol A-removing recombinant Escherichia coli by monomeric and dimeric surface display of bisphenol A-binding peptide. Bioproc. Biosyst. Eng. 2018, 41, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Nakatani, H.; Ding, N.; Ohara, Y.; Hori, K. Immobilization of Enterobacter aerogenes by a trimeric autotransporter adhesin, AtaA, and its application to biohydrogen production. Catalysts 2018, 8, 159. [Google Scholar] [CrossRef]
- Wilhelm, S.; Rosenau, F.; Kolmar, H.; Jaeger, K.E. Autotransporters with GDSL passenger domains: Molecular physiology and biotechnological applications. ChemBioChem 2011, 12, 1476–1485. [Google Scholar] [CrossRef] [PubMed]
- Nicolay, T.; Vanderleyden, J.; Spaepen, S. Autotransporter-based cell surface display in Gram-negative bacteria. Crit. Rev. Microbiol. 2015, 41, 109–123. [Google Scholar] [CrossRef]
- Hu, H.F.; Li, L.L.; Ding, S.J. An organic solvent-tolerant phenolic acid decarboxylase from Bacillus licheniformis for the efficient bioconversion of hydroxycinnamic acids to vinyl phenol derivatives. Appl. Microbiol. Biotechnol. 2015, 99, 5071–5081. [Google Scholar] [CrossRef] [PubMed]
- Petrovskaya, L.E.; Novototskaya-Vlasova, K.A.; Kryukova, E.A.; Rivkina, E.M.; Dolgikh, D.A.; Kirpichnikov, M.P. Cell surface display of cold-active esterase EstPc with the use of a new autotransporter from Psychrobacter cryohalolentis K5T. Extremophiles 2015, 19, 161–170. [Google Scholar] [CrossRef]
- Natale, P.; Bruser, T.; Driessen, A.J.M. Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane: Distinct translocases and mechanisms. BBA-Rev. Biomembr. 2008, 1778, 1735–1756. [Google Scholar] [CrossRef]
- Schultheiss, E.; Paar, C.; Schwab, H.; Jose, J. Functional esterase surface display by the autotransporter pathway in Escherichia coli. J. Mol. Catal. B-Enzym. 2002, 18, 89–97. [Google Scholar] [CrossRef]
- Kim, S.J.; Song, J.K.; Kim, H.K. Cell surface display of Staphylococcus haemolyticus L62 lipase in Escherichia coli and its application as a whole cell biocatalyst for biodiesel production. J. Mol. Catal. B-Enzym. 2013, 97, 54–61. [Google Scholar] [CrossRef]
- Kranen, E.; Detzel, C.; Weber, T.; Jose, J. Autodisplay for the co-expression of lipase and foldase on the surface of E coli: Washing with designer bugs. Microb. Cell Fact. 2014, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Oliver, D.C.; Huang, G.; Fernandez, R.C. Identification of secretion determinants of the Bordetella pertussis BrkA autotransporter. J. Bacteriol. 2003, 185, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Nicolay, T.; Lemoine, L.; Lievens, E.; Balzarini, S.; Vanderleyden, J.; Spaepen, S. Probing the applicability of autotransporter based surface display with the EstA autotransporter of Pseudomonas stutzeri A15. Microb. Cell Fact. 2012, 11, 158. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Y.; Kaleem, I.; He, D.M.; Liu, G.Y.; Li, C. Efficient production of glycyrrhetic acid 3-O-mono-β-D-glucuronide by whole-cell biocatalysis in an ionic liquid/buffer biphasic system. Process. Biochem. 2012, 47, 908–913. [Google Scholar] [CrossRef]
- Chen, Y.H.; Li, L.L.; Long, L.K.; Ding, S.J. High cell-density cultivation of phenolic acid decarboxylase-expressing Escherichia coli and 4-vinylguaiacol bioproduction from ferulic acid by whole-cell catalysis. J. Chem. Technol. Biot. 2018, 93, 2415–2421. [Google Scholar] [CrossRef]
Substrate Concentrations (mM) | 50 | 100 | 150 | 200 | 250 | 300 | |
---|---|---|---|---|---|---|---|
Overall conversion yields (%) | pCA | 100 ± 4.6 | 100 ± 3.8 | 100 ± 4.1 | 98.1 ± 5.2 | 88.3 ± 2.7 | 80.4 ± 4.1 |
FA | 100 ± 3.9 | 100 ± 3.1 | 94.2 ± 3.8 | 81.4 ± 2.9 | 79.2 ± 3.2 | 72.6 ± 3.6 | |
CA | 29.3 ± 2.5 | 26.1 ± 2.2 | 16.2 ± 1.4 | 12.9 ± 2.0 | 7.8 ± 1.6 | 7.2 ± 1.1 | |
SA | 9.1 ± 1.2 | 8.8 ± 0.9 | 8.5 ± 1.2 | 7.3 ± 1.6 | 6.3 ± 1.3 | 4.5 ± 0.9 |
Primers | Sequences (5′–3′) | Restrictive Sites |
---|---|---|
blpad-EF | CGGGATCCTATGAATCAAGATGTAAAAGAGTTT | BamH I |
blpad-ER | CAGGCTAGCTACCCGCTTTCCTGCCCT | - |
EstA-EF | GTAGCTAGCCTGATCGCCGACTATGGCTA | - |
EstA-ER | CCGCTCGAGTCAGAAATCCAGGCTGACC | Xho I |
F1 | GCAGCCAGGCATTCGCTGCCATGAATCAAGATGTAAAAGAG | - |
F2 | GGCCACATTGGCGCTGGCGTGCAGCCAGGCATTCGCTGCC | - |
F3 | CCGTTATTGCGCTTTACCCTGGCCACATTGGCGCTGGCGT | - |
F4 | GGGAATTCCATATGCGAAAAGCACCGTTATTGCGCTTTACCCT | Nde I |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Wu, X.; Long, L.; Ding, S. Functional Autodisplay of Phenolic Acid Decarboxylase using a GDSL Autotransporter on Escherichia coli for Efficient Catalysis of 4-Hydroxycinnamic Acids to Vinylphenol Derivatives. Catalysts 2019, 9, 634. https://doi.org/10.3390/catal9080634
Li L, Wu X, Long L, Ding S. Functional Autodisplay of Phenolic Acid Decarboxylase using a GDSL Autotransporter on Escherichia coli for Efficient Catalysis of 4-Hydroxycinnamic Acids to Vinylphenol Derivatives. Catalysts. 2019; 9(8):634. https://doi.org/10.3390/catal9080634
Chicago/Turabian StyleLi, Lulu, Xiang Wu, Liangkun Long, and Shaojun Ding. 2019. "Functional Autodisplay of Phenolic Acid Decarboxylase using a GDSL Autotransporter on Escherichia coli for Efficient Catalysis of 4-Hydroxycinnamic Acids to Vinylphenol Derivatives" Catalysts 9, no. 8: 634. https://doi.org/10.3390/catal9080634
APA StyleLi, L., Wu, X., Long, L., & Ding, S. (2019). Functional Autodisplay of Phenolic Acid Decarboxylase using a GDSL Autotransporter on Escherichia coli for Efficient Catalysis of 4-Hydroxycinnamic Acids to Vinylphenol Derivatives. Catalysts, 9(8), 634. https://doi.org/10.3390/catal9080634