Recent Developments in Carriers and Non-Aqueous Solvents for Enzyme Immobilization
Abstract
:1. Introduction
2. Immobilization Techniques
2.1. Adsorption
2.2. Covalent Bonding
2.3. Metal–Organic Frameworks
2.4. Non-Aqueous Solvents
2.4.1. Enzyme Immobilization in Ionic Liquids
2.4.2. Enzyme Immobilization in Supercritical Fluids
3. Summary
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CLEA | cross-linking enzyme aggregate |
CLEC | cross-linking enzyme crystal |
SCFs | supercritical fluids |
ILs | ionic liquids |
FAME | fatty acid methyl ester |
MOFs | metal-organic frameworks |
PGA | penicillin G acylase |
ZIF-8 | zeolitic imidazolate framework-8 |
OPAA | organophosphorus acid anhydrolase |
LDH | layered double hydroxides |
FalDH | formaldehyde dehydrogenase |
FDH | formate dehydrogenase |
GDH | glutamate dehydrogenase |
References
- Ikai, A. Thermostability and Aliphatic Index of Globular Proteins. J. Biochem. 1980, 88, 1895–1898. [Google Scholar] [PubMed]
- Lerin, L.A.; Loss, R.A.; Remonatto, D.; Zenevicz, M.C.; Balen, M.; Netto, V.O.; Ninow, J.L.; Trentin, C.M.; Oliveira, J.V.; De Oliveira, D. A review on lipase-catalyzed reactions in ultrasound-assisted systems. Bioprocess Biosyst. Eng. 2014, 37, 2381–2394. [Google Scholar] [CrossRef] [PubMed]
- Gumel, A.M.; Annuar, M.S.M. Thermomyces lanuginosus lipase-catalyzed synthesis of natural flavor esters in a continuous flow microreactor. 3 Biotech 2016, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Kirk, O.; Borchert, T.V.; Fuglsang, C.C. Industrial enzyme applications. Curr. Opin. Biotechnol. 2002, 13, 345–351. [Google Scholar] [CrossRef]
- Andrade, T.A.; Errico, M.; Christensen, K.V. Influence of the reaction conditions on the enzyme catalyzed transesterification of castor oil: A possible step in biodiesel production. Bioresour. Technol. 2017, 243, 366–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Datta, S.; Christena, L.R.; Rajaram, Y.R.S. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 2013, 3, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rueda, N.; Dos Santos, J.C.S.; Ortiz, C.; Torres, R.T.R.; Barbosa, O.; Rodrigues, R.C.; Berenguer-Murcia, Á.; Fernandez-Lafuente, R.; Dos Santos, J.C.S. Chemical Modification in the Design of Immobilized Enzyme Biocatalysts: Drawbacks and Opportunities. Chem. Rec. 2016, 16, 1436–1455. [Google Scholar] [CrossRef]
- Zaak, H.; Fernandez-Lopez, L.; Otero, C.; Sassi, M.; Fernandez-Lafuente, R. Improved stability of immobilized lipases via modification with polyethylenimine and glutaraldehyde. Enzym. Microb. Technol. 2017, 106, 67–74. [Google Scholar] [CrossRef]
- Mohamad, N.R.; Marzuki, N.H.C.; Buang, N.A.; Huyop, F.; Wahab, R.A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Biotechnol. Equip. 2015, 29, 205–220. [Google Scholar] [CrossRef]
- Sirisha, V.L.; Jain, A.; Jain, A. Enzyme Immobilization: An Overview on Methods, Support Material, and Applications of Immobilized Enzymes. Adv. Food Nutr. Res. 2016, 79, 179–211. [Google Scholar]
- Morawietz, T.; Singraber, A.; Dellago, C.; Behler, J. How van der Waals interactions determine the unique properties of water. Proc. Natl. Acad. Sci. USA 2016, 113, 8368–8373. [Google Scholar] [CrossRef] [Green Version]
- Facchini, F.D.A.; Pereira, M.G.; Vici, A.C.; Filice, M.; Pessela, B.C.; Guisan, J.M.; Fernández-Lorente, G.; Polizeli, M.D.L.T.D.M. Immobilization Effects on the Catalytic Properties of Two Fusarium Verticillioides Lipases: Stability, Hydrolysis, Transesterification and Enantioselectivity Improvement. Catalysts 2018, 8, 84. [Google Scholar] [CrossRef]
- Li, X.; Liu, P.; Khan, F.I.; Li, D.; Yang, B.; Wang, Y. Substrate selectivity and optimization of immobilized SMG1-F278N lipase in synthesis of propylene glycol monooleate. Eur. J. Lipid Sci. Technol. 2017, 119, 1600423. [Google Scholar]
- Lynch, M.M.; Liu, J.; Nigra, M.; Coppens, M.-O. Chaperonin-Inspired pH Protection by Mesoporous Silica SBA-15 on Myoglobin and Lysozyme. Langmuir 2016, 32, 9604–9610. [Google Scholar] [CrossRef] [Green Version]
- Öztürk, H.; Pollet, E.; Phalip, V.; Güvenilir, Y.; Avérous, L. Nanoclays for Lipase Immobilization: Biocatalyst Characterization and Activity in Polyester Synthesis. Polymers 2016, 8, 416. [Google Scholar] [CrossRef]
- Jamal, F.; Singh, S. Application of diethylaminoethyl cellulose immobilized pointed gourd (Trichosanthes dioica) peroxidase in treatment of phenol and α-naphthol. J. Bioprocess. Biotech. 2014, 5, 1000196. [Google Scholar]
- Zaborova, O.V.; Filippov, S.K.; Chytil, P.; Kováčik, L.; Ulbrich, K.; Yaroslavov, A.A.; Etrych, T. A Novel Approach to Increase the Stability of Liposomal Containers via In Prep Coating by Poly[N-(2-Hydroxypropyl)Methacrylamide] with Covalently Attached Cholesterol Groups. Macromol. Chem. Phys. 2018, 219, 1700508. [Google Scholar] [CrossRef]
- Liu, H.; Shi, S.; Cao, J.; Ji, L.; He, Y.; Xi, J. Preparation and evaluation of a novel bioactive glass/lysozyme/PLGA composite microsphere. Drug Dev. Ind. Pharm. 2012, 41, 458–463. [Google Scholar] [CrossRef]
- Frenzel, M.; Steffen-Heins, A. Whey protein coating increases bilayer rigidity and stability of liposomes in food-like matrices. Food Chem. 2015, 173, 1090–1099. [Google Scholar] [CrossRef]
- Tan, S.-W.; Wu, T.; Zhang, D.; Zhang, Z. Cell or Cell Membrane-Based Drug Delivery Systems. Theranostics 2015, 5, 863–881. [Google Scholar] [CrossRef] [Green Version]
- Ji, X.; Su, Z.; Ma, G.; Zhang, S. Sandwiching multiple dehydrogenases and shared cofactor between double polyelectrolytes for enhanced communication of cofactor and enzymes. Biochem. Eng. J. 2018, 137, 40–49. [Google Scholar] [CrossRef]
- Li, C.; Hein, S.; Wang, K. Chitosan-carrageenan polyelectrolyte complex for the delivery of protein drugs. ISRN Biomater. 2012, 2013. [Google Scholar] [CrossRef]
- Elgadir, M.; Uddin, M.; Ferdosh, S.; Adam, A.; Chowdhury, A.J.K.; Sarker, M.I.; Ferdous, S. Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: A review. J. Food Drug Anal. 2015, 23, 619–629. [Google Scholar] [CrossRef] [Green Version]
- Long, J.; Xu, E.; Li, X.; Wu, Z.; Wang, F.; Xu, X.; Jin, Z.; Jiao, A.; Zhan, X. Effect of chitosan molecular weight on the formation of chitosan–pullulanase soluble complexes and their application in the immobilization of pullulanase onto Fe3O4–κ-carrageenan nanoparticles. Food Chem. 2016, 202, 49–58. [Google Scholar] [CrossRef]
- Hartmann, M.; Kostrov, X. Immobilization of enzymes on porous silicas—Benefits and challenges. Chem. Soc. Rev. 2013, 42, 6277. [Google Scholar] [CrossRef]
- Morsi, R.E.; Mohamed, R.S. Nanostructured mesoporous silica: Influence of the preparation conditions on the physical-surface properties for efficient organic dye uptake. R. Soc. Open Sci. 2018, 5, 172021. [Google Scholar] [CrossRef]
- Madhusoodana, C.D.; Kameshima, Y.; Nakajima, A.; Okada, K.; Kogure, T.; MacKenzie, K.J. Synthesis of high surface area Al-containing mesoporous silica from calcined and acid leached kaolinites as the precursors. J. Colloid Interface Sci. 2006, 297, 724–731. [Google Scholar] [CrossRef]
- Cruz, J.C.; Würges, K.; Kramer, M.; Pfromm, P.H.; Rezac, M.E.; Czermak, P. Immobilization of Enzymes on Fumed Silica Nanoparticles for Applications in Nonaqueous Media. Evolutionary Genom. 2011, 743, 147–160. [Google Scholar]
- Zhang, J.; Zhang, L.; Lei, C.; Huang, X.; Yang, Y.; Yu, C. A Concentration-Dependent Insulin Immobilization Behavior of Alkyl-Modified Silica Vesicles: The Impact of Alkyl Chain Length. Langmuir 2018, 34, 5011–5019. [Google Scholar] [CrossRef]
- Gustafsson, H.; Küchler, A.; Holmberg, K.; Walde, P. Co-immobilization of enzymes with the help of a dendronized polymer and mesoporous silica nanoparticles. J. Mater. Chem. B 2015, 3, 6174–6184. [Google Scholar] [CrossRef]
- Tsunoji, N.; Bandyopadhyay, M.; Yagenji, Y.; Nishida, H.; Sadakane, M.; Sano, T. Design of a highly active base catalyst through utilizing organic-solvent-treated layered silicate Hiroshima University Silicates. Dalton Trans. 2017, 46, 7441–7450. [Google Scholar] [CrossRef] [PubMed]
- Cavusoglu, H.; Buyukbekar, B.Z.; Sakalak, H.; Kohsakowski, S.; Buyukbekar, B.Z.B.Z. Retraction: Gold Nanoparticles Immobilized on Electrospun Titanium Dioxide Nanofibers for Catalytic Reduction of 4-Nitrophenol. ChemPhysChem 2017, 18, 1956. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Ali, S.A.A.; Nassar, A.M.; Elweshahy, S.M.; Ahmed, S.B. Immobilization of chitosan nanolayers on the surface of nano-titanium oxide as a novel nanocomposite for efficient removal of La(III) from water. Int. J. Boil. Macromol. 2017, 101, 230–240. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, X.; Jia, Y.; Rees, F.; Tsang, D.C.; Qiu, R.; Wang, H. Metal immobilization by sludge-derived biochar: Roles of mineral oxides and carbonized organic compartment. Environ. Geochem. Health 2017, 39, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Febriansyah, B.; Gupta, D.; Ng, L.K.-S.; Xi, S.; Du, Y.; Baikie, T.; Dong, Z.; Soo, H.S. Hybrid Nanomaterials with Single-Site Catalysts by Spatially Controllable Immobilization of Nickel Complexes via Photoclick Chemistry for Alkene Epoxidation. ACS Nano 2018, 12, 5903–5912. [Google Scholar] [CrossRef]
- Tao, Q.-L.; Li, Y.; Shi, Y.; Liu, R.-J.; Zhang, Y.-W.; Guo, J. Application of Molecular Imprinted Magnetic Fe3O4@SiO2 Nanoparticles for Selective Immobilization of Cellulase. J. Nanosci. Nanotechnol. 2016, 16, 6055–6060. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, X.-Y.; Jiang, X.-P.; Ye, J.-J.; Zhang, Y.-W.; Zhang, X.-Y. Fabrication of graphene oxide decorated with Fe3O4@SiO2 for immobilization of cellulase. J. Nanoparticle Res. 2015, 17, 8. [Google Scholar] [CrossRef]
- Liu, C.-H.; Li, X.-Q.; Jiang, X.-P.; Zhuang, M.-Y.; Zhang, J.-X.; Bao, C.-H.; Zhang, Y.-W. Preparation of Functionalized Graphene Oxide Nanocomposites for Covalent Immobilization of NADH Oxidase. Nanosci. Nanotechnol. Lett. 2016, 8, 164–167. [Google Scholar] [CrossRef]
- Jiang, X.-P.; Lu, T.-T.; Liu, C.-H.; Ling, X.-M.; Zhuang, M.-Y.; Zhang, J.-X.; Zhang, Y.-W. Immobilization of dehydrogenase onto epoxy-functionalized nanoparticles for synthesis of (R)-mandelic acid. Int. J. Boil. Macromol. 2016, 88, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Mateo, C.; Abian, O.; Fernandez-Lafuente, R.; Guisán, J.M. Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachment. Enzym. Microb. Technol. 2000, 26, 509–515. [Google Scholar] [CrossRef]
- Guzik, U.; Hupert-Kocurek, K.; Wojcieszyńska, D. Immobilization as a Strategy for Improving Enzyme Properties-Application to Oxidoreductases. Molecules 2014, 19, 8995–9018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ispas, C.; Sokolov, I.; Andreescu, S. Enzyme-functionalized mesoporous silica for bioanalytical applications. Anal. Bioanal. Chem. 2009, 393, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Homaei, A.A.; Sariri, R.; Vianello, F.; Vianello, R. Enzyme immobilization: An update. J. Chem. Biol. 2013, 6, 185–205. [Google Scholar] [CrossRef] [PubMed]
- Xia, G.-H.; Liu, W.; Jiang, X.-P.; Wang, X.-Y.; Zhang, Y.-W.; Guo, J. Surface Modification of Fe3O4@SiO2 Magnetic Nanoparticles for Immobilization of Lipase. J. Nanosci. Nanotechnol. 2017, 17, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, M.-Y.; Zhou, Q.-L.; Wang, X.-Y.; Zhang, J.-X.; Xue, L.; Wang, R.; Zhang, J.-X.; Zhang, Y.Z. Immobilization of Lipase Onto Dopamine Functionalized Magnetic Nanoparticles. Nanosci. Nanotechnol. Lett. 2016, 8, 251–254. [Google Scholar] [CrossRef]
- Zhuang, M.-Y.; Jiang, X.-P.; Ling, X.-M.; Xu, M.-Q.; Zhu, Y.-H.; Zhang, Y.-W.; Ye-Wang, Z. Immobilization of glycerol dehydrogenase and NADH oxidase for enzymatic synthesis of 1,3-dihydroxyacetone with in situ cofactor regeneration. J. Chem. Technol. Biotechnol. 2018, 93, 2351–2358. [Google Scholar] [CrossRef]
- Gao, J.; Lu, C.-L.; Wang, Y.; Wang, S.-S.; Shen, J.-J.; Zhang, J.-X.; Zhang, Y.-W. Rapid Immobilization of Cellulase onto Graphene Oxide with a Hydrophobic Spacer. Catalysts 2018, 8, 180. [Google Scholar] [CrossRef]
- Gao, J.; Wang, A.-R.; Jiang, X.-P.; Zhang, J.-X.; Zhang, Y.-W. Preparation of Expoxy-Functionalized Magnetic Nanoparticles for Immobilization of Glycerol Dehydrogenase. J. Nanosci. Nanotechnol. 2018, 18, 4852–4857. [Google Scholar] [CrossRef]
- Alatawi, F.S.; Monier, M.; Elsayed, N.H. Amino functionalization of carboxymethyl cellulose for efficient immobilization of urease. Int. J. Boil. Macromol. 2018, 114, 1018–1025. [Google Scholar] [CrossRef]
- Yi, S.; Dai, F.; Zhao, C.; Si, Y. A reverse micelle strategy for fabricating magnetic lipase-immobilized nanoparticles with robust enzymatic activity. Sci. Rep. 2017, 7, 9806. [Google Scholar] [CrossRef]
- Cao, S.-L.; Huang, Y.-M.; Li, X.-H.; Xu, P.; Wu, H.; Li, N.; Lou, W.-Y.; Zong, M.-H. Preparation and Characterization of Immobilized Lipase from Pseudomonas Cepacia onto Magnetic Cellulose Nanocrystals. Sci. Rep. 2016, 6, 20420. [Google Scholar] [CrossRef] [Green Version]
- Aßmann, M.; Mügge, C.; Gaßmeyer, S.K.; Enoki, J.; Hilterhaus, L.; Kourist, R.; Liese, A.; Kara, S. Improvement of the Process Stability of Arylmalonate Decarboxylase by Immobilization for Biocatalytic Profen Synthesis. Front. Microbiol. 2017, 8, 555. [Google Scholar] [CrossRef]
- Mateo, C.; Van Langen, L.M.; Van Rantwijk, F.; Sheldon, R.A. A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnol. Bioeng. 2004, 86, 273–276. [Google Scholar] [CrossRef]
- Schoevaart, R.; Wolbers, M.; Golubovic, M.; Ottens, M.; Kieboom, A.; Van Rantwijk, F.; Van Der Wielen, L.; Sheldon, R. Preparation, optimization, and structures of cross-linked enzyme aggregates (CLEAs). Biotechnol. Bioeng. 2004, 87, 754–762. [Google Scholar] [CrossRef]
- López-Serrano, P.; Cao, L.; Van Rantwijk, F.; Sheldon, R. Cross-linked enzyme aggregates with enhanced activity: Application to lipases. Biotechnol. Lett. 2002, 24, 1379–1383. [Google Scholar]
- Vrsanska, M.; Voberkova, S.; Jiménez, A.M.J.; Strmiska, V.; Adam, V.; Jiménez, A.J. Preparation and Optimisation of Cross-Linked Enzyme Aggregates Using Native Isolate White Rot Fungi Trametes versicolor and Fomes fomentarius for the Decolourisation of Synthetic Dyes. Int. J. Environ. Res. Public Health 2017, 15, 23. [Google Scholar] [CrossRef]
- Kim, M.I.; Kim, J.; Lee, J.; Jia, H.; Bin Na, H.; Youn, J.K.; Kwak, J.H.; Dohnalkova, A.; Grate, J.W.; Wang, P.; et al. Crosslinked enzyme aggregates in hierarchically-ordered mesoporous silica: A simple and effective method for enzyme stabilization. Biotechnol. Bioeng. 2007, 96, 210–218. [Google Scholar] [CrossRef]
- Zelinski, T.; Waldmann, H. Cross-Linked Enzyme Crystals(CLECs): Efficient and Stable Biocatalysts for Preparative Organic Chemistry. Angew. Chem. Int. Ed. 1997, 36, 722–724. [Google Scholar] [CrossRef]
- Hetrick, E.M.; Sperry, D.C.; Nguyen, H.K.; Strege, M.A. Characterization of a Novel Cross-Linked Lipase: Impact of Cross-Linking on Solubility and Release from Drug Product. Mol. Pharm. 2014, 11, 1189–1200. [Google Scholar] [CrossRef]
- Xu, M.-Q.; Wang, S.-S.; Li, L.-N.; Gao, J.; Zhang, Y.-W. Combined Cross-Linked Enzyme Aggregates as Biocatalysts. Catalysts 2018, 8, 460. [Google Scholar] [CrossRef]
- Dey, C.; Kundu, T.; Biswal, B.P.; Mallick, A.; Banerjee, R. Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2014, 70, 3–10. [Google Scholar] [CrossRef]
- Feng, D.; Liu, T.-F.; Su, J.; Bosch, M.; Wei, Z.; Wan, W.; Yuan, D.; Chen, Y.-P.; Wang, X.; Wang, K.; et al. Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nat. Commun. 2015, 6, 5979. [Google Scholar] [CrossRef] [Green Version]
- Mehta, J.; Bhardwaj, N.; Bhardwaj, S.K.; Kim, K.-H.; Deep, A. Recent advances in enzyme immobilization techniques: Metal-organic frameworks as novel substrates. Co-ord. Chem. Rev. 2016, 322, 30–40. [Google Scholar] [CrossRef]
- Wang, C.; Liu, D.; Lin, W. Metal-organic Frameworks as A Tunable Platform for Designing Functional Molecular Materials. J. Am. Chem. Soc. 2013, 135, 13222–13234. [Google Scholar] [CrossRef]
- Xiong, F.; Hu, K.; Yu, H.; Zhou, L.; Song, L.; Zhang, Y.; Shan, X.; Liu, J.; Gu, N. A Functional Iron Oxide Nanoparticles Modified with PLA-PEG-DG as Tumor-Targeted MRI Contrast Agent. Pharm. Res. 2017, 34, 1683–1692. [Google Scholar] [CrossRef]
- Gao, L.; Li, Q.; Deng, Z.; Brady, B.; Xia, N.; Zhou, Y.; Shi, H. Highly sensitive protein detection via covalently linked aptamer to MoS2 and exonuclease-assisted amplification strategy. Int. J. Nanomed. 2017, 12, 7847–7853. [Google Scholar] [CrossRef]
- Du, F.; Lou, J.; Jiang, R.; Fang, Z.; Zhao, X.; Niu, Y.; Zou, S.; Zhang, M.; Gong, A.; Wu, C. Hyaluronic acid-functionalized bismuth oxide nanoparticles for computed tomography imaging-guided radiotherapy of tumor. Int. J. Nanomed. 2017, 12, 5973–5992. [Google Scholar] [CrossRef]
- Ren, S.; Feng, Y.; Wen, H.; Li, C.; Sun, B.; Cui, J.; Jia, S. Immobilized carbonic anhydrase on mesoporous cruciate flower-like metal organic framework for promoting CO2 sequestration. Int. J. Boil. Macromol. 2018, 117, 189–198. [Google Scholar] [CrossRef]
- Jung, S.; Kim, Y.; Kim, S.-J.; Kwon, T.-H.; Huh, S.; Park, S. Bio-functionalization of metal–organic frameworks by covalent protein conjugation. Chem. Commun. 2011, 47, 2904. [Google Scholar] [CrossRef]
- Lyu, F.; Zhang, Y.; Zare, R.N.; Ge, J.; Liu, Z. One-Pot Synthesis of Protein-Embedded Metal–Organic Frameworks with Enhanced Biological Activities. Nano Lett. 2014, 14, 5761–5765. [Google Scholar] [CrossRef]
- Li, P.; Modica, J.A.; Howarth, A.J.; Vargas, E.; Moghadam, P.Z.; Snurr, R.Q.; Mrksich, M.; Hupp, J.T.; Farha, O.K. Toward Design Rules for Enzyme Immobilization in Hierarchical Mesoporous Metal-Organic Frameworks. Chem 2016, 1, 154–169. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Gao, J.; Liu, H.; Zhou, L.; Ma, L.; He, Y.; Huang, Z.; Jiang, Y. Enzyme@silica nanoflower@metal-organic framework hybrids: A novel type of integrated nanobiocatalysts with improved stability. Nano Res. 2018, 11, 4380–4389. [Google Scholar] [CrossRef]
- Banerjee, R. Functional Supramolecular Materials: From Surfaces to MOFs; Royal Society of Chemistry: London, UK, 2017. [Google Scholar]
- Li, P.; Moon, S.-Y.; Guelta, M.A.; Lin, L.; Gómez-Gualdrón, D.A.; Snurr, R.Q.; Harvey, S.P.; Hupp, J.T.; Farha, O.K. Nanosizing a Metal–Organic Framework Enzyme Carrier for Accelerating Nerve Agent Hydrolysis. ACS Nano 2016, 10, 9174–9182. [Google Scholar] [CrossRef]
- Zeng, H.C.; Li, P. Immobilization of Metal–Organic Framework Nanocrystals for Advanced Design of Supported Nanocatalysts. ACS Appl. Mater. Interfaces 2016, 8, 29551–29564. [Google Scholar]
- Stepankova, V.; Bidmanova, S.; Koudelakova, T.; Prokop, Z.; Chaloupkova, R.; Damborsky, J. Strategies for Stabilization of Enzymes in Organic Solvents. ACS Catal. 2013, 3, 2823–2836. [Google Scholar] [CrossRef]
- Shi, F.; Zhao, Y.; Firempong, C.K.; Xu, X. Preparation, characterization and pharmacokinetic studies of linalool-loaded nanostructured lipid carriers. Pharm. Boil. 2016, 54, 1–9. [Google Scholar] [CrossRef]
- Zaks, A.; Klibanov, A.M. Enzyme-catalyzed processes in organic solvents. Proc. Natl. Acad. Sci. USA 1985, 82, 3192–3196. [Google Scholar] [CrossRef]
- Bridiau, N.; Issaoui, N.; Maugard, T. The effects of organic solvents on the efficiency and regioselectivity of N-acetyl-lactosamine synthesis, using the beta-galactosidase from Bacillus circulans in hydro-organic media. Biotechnol. Prog. 2010, 26, 1278–1289. [Google Scholar] [CrossRef]
- Kumar, A.; Dhar, K.; Kanwar, S.S.; Arora, P.K. Lipase catalysis in organic solvents: advantages and applications. Boil. Proced. Online 2016, 18, 263. [Google Scholar] [CrossRef]
- Structural Genomics Consortium; Architecture et Fonction des Macromolécules Biologiques; Berkeley Structural Genomics Center; China Structural Genomics Consortium; Integrated Center for Structure and Function Innovation; Israel Structural Proteomics Center; Joint Center for Structural Genomics; Midwest Center for Structural Genomics; New York Structural GenomiX Research Center for Structural Genomics; Northeast Structural Genomics Consortium; et al. Protein production and purification. Nat. Methods 2008, 5, 135–146. [Google Scholar] [CrossRef]
- Kankala, R.K.; Zhang, Y.S.; Wang, S.-B.; Lee, C.-H.; Chen, A.-Z. Supercritical Fluid Technology: An Emphasis on Drug Delivery and Related Biomedical Applications. Adv. Health Mater. 2017, 6, 1700433. [Google Scholar] [CrossRef]
- Kankala, R.K.; Chen, B.-Q.; Liu, C.-G.; Tang, H.-X.; Wang, S.-B.; Chen, A.-Z. Solution-enhanced dispersion by supercritical fluids: an ecofriendly nanonization approach for processing biomaterials and pharmaceutical compounds. Int. J. Nanomed. 2018, 13, 4227–4245. [Google Scholar] [CrossRef]
- Erbeldinger, M.; Mesiano, A.; Russell, A. Enzymatic Catalysis of Formation of Z-Aspartame in Ionic Liquid—An Alternative to Enzymatic Catalysis in Organic Solvents. Biotechnol. Prog. 2000, 16, 1129–1131. [Google Scholar] [CrossRef]
- Lau, R.M.; Van Rantwijk, F.; Seddon, K.R.; Sheldon, R.A. Lipase-Catalyzed Reactions in Ionic Liquids. Org. Lett. 2000, 2, 4189–4191. [Google Scholar]
- Karimi, B.; Tavakolian, M.; Akbari, M.; Mansouri, F. Ionic Liquids in Asymmetric Synthesis: An Overall View from Reaction Media to Supported Ionic Liquid Catalysis. ChemCatChem 2018, 10, 3173–3205. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Hosseinkhani, S.; Heydari, A.; Khavari-Nejad, R.A.; Akbari, J. Improvement of Thermostability and Activity of Firefly Luciferase Through [TMG][Ac] Ionic Liquid Mediator. Appl. Biochem. Biotechnol. 2012, 168, 604–615. [Google Scholar] [CrossRef]
- Filice, M.; Romero, O.; Abian, O.; Rivas, B.D.L.; Palomo, J.M. Low ionic liquid concentration in water: A green and simple approach to improve activity and selectivity of lipases. RSC Adv. 2014, 4, 49115–49122. [Google Scholar] [CrossRef]
- Lee, J.K.; Kim, M.-J. Ionic Liquid-Coated Enzyme for Biocatalysis in Organic Solvent. J. Org. Chem. 2002, 67, 6845–6847. [Google Scholar] [CrossRef]
- Grollmisch, A.; Kragl, U.; Großeheilmann, J. Enzyme Immobilization in Polymerized Ionic Liquids-based Hydrogels for Active and Reusable Biocatalysts. SynOpen 2018, 2, 0192–0199. [Google Scholar] [CrossRef] [Green Version]
- Abdi, Y.; Shomal, R.; Taher, H.; Al-Zuhair, S. Improving the reusability of an immobilized lipase-ionic liquid system for biodiesel production. Biofuels 2018, 1–7. [Google Scholar] [CrossRef]
- Carvalho, N.B.; Vidal, B.T.; Barbosa, A.S.; Pereira, M.M.; Mattedi, S.; Freitas, L.D.S.; Lima, A.S.; Soares, C.M.F. Lipase Immobilization on Silica Xerogel Treated with Protic Ionic Liquid and its Application in Biodiesel Production from Different Oils. Int. J. Mol. Sci. 2018, 19, 1829. [Google Scholar] [CrossRef]
- Hosseini, S.H.; Hosseini, S.A.; Zohreh, N.; Yaghoubi, M.; Pourjavadi, A. Covalent immobilization of cellulase using magnetic poly(ionic liquid) support; improvement of the enzyme activity and stability. J. Agric. Food Chem. 2018, 66, 789–798. [Google Scholar] [CrossRef]
- Khademy, M.; Karimi, B.; Zareian, S. Ionic Liquid-Based Periodic Mesoporous Organosilica: An Innovative Matrix for Enzyme Immobilization. ChemistrySelect 2017, 2, 9953–9957. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, A.S.; Lisboa, J.A.; Silva, M.A.O.; Carvalho, N.B.; Pereira, M.M.; Fricks, A.T.; Mattedi, S.; Lima, Á.S.; Franceschi, E.; Soares, C.M.F. The Novel Mesoporous Silica Aerogel Modified With Protic Ionic Liquid For Lipase Immobilization. Química Nova 2016, 39, 415–422. [Google Scholar]
- More, S.B.; Waghmare, J.S.; Gogate, P.R.; Naik, S.N. Improved synthesis of medium chain triacylglycerol catalyzed by lipase based on use of supercritical carbon dioxide pretreatment. Chem. Eng. J. 2018, 334, 1977–1987. [Google Scholar] [CrossRef]
- Rehman, M.; Shekunov, B.Y.; York, P.; Colthorpe, P. Solubility and Precipitation of Nicotinic Acid in Supercritical Carbon Dioxide. J. Pharm. Sci. 2001, 90, 1570–1582. [Google Scholar] [CrossRef]
- Wimmer, Z.; Zarevúcka, M. A Review on the Effects of Supercritical Carbon Dioxide on Enzyme Activity. Int. J. Mol. Sci. 2010, 11, 233–253. [Google Scholar] [CrossRef]
- Lozano, P.; Vıllora, G.; Gomez, D.; Gayo, A.; Sánchez-Conesa, J.; Rubio, M.; Iborra, J.L. Membrane reactor with immobilized Candida antarctica lipase B for ester synthesis in supercritical carbon dioxide. J. Supercrit. Fluids 2004, 29, 121–128. [Google Scholar] [CrossRef]
- Pollardo, A.A.; Lee, H.-S.; Lee, D.; Kim, S.; Kim, J. Effect of supercritical carbon dioxide on the enzymatic production of biodiesel from waste animal fat using immobilized Candida antarctica lipase B variant. BMC Biotechnol. 2017, 17, 70. [Google Scholar] [CrossRef]
- Mushtaq, M.; Sultana, B.; Akram, S.; Anwar, F.; Adnan, A.; Rizvi, S.S.H. Enzyme-assisted supercritical fluid extraction: An alternative and green technology for non-extractable polyphenols. Anal. Bioanal. Chem. 2017, 31, 275–3655. [Google Scholar] [CrossRef]
- Jain, A.; Ong, V.; Jayaraman, S.; Balasubramanian, R.; Srinivasan, M. Supercritical fluid immobilization of horseradish peroxidase on high surface area mesoporous activated carbon. J. Supercrit. Fluids 2016, 107, 513–518. [Google Scholar] [CrossRef]
- Dos Santos, J.C.S.; Bonazza, H.L.; de Matos, L.J.B.L.; Carneiro, E.A.; Barbosa, O.; Fernandez-Lafuente, R.; Gonçalves, L.R.B.; de Sant’Ana, H.B.; Santiago-Aguiar, R.S. Immobilization of CALB on activated chitosan: Application to enzymatic synthesis in supercritical and near-critical carbon dioxide. Biotechnol. Rep. 2017, 14, 16–26. [Google Scholar] [CrossRef]
- Ding, S.; Cargill, A.A.; Medintz, I.L.; Claussen, J.C. Increasing the activity of immobilized enzymes with nanoparticle conjugation. Curr. Opin. Biotechnol. 2015, 34, 242–250. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.-Y.; Firempong, C.K.; Wang, Y.-W.; Xu, W.-Q.; Wang, M.-M.; Cao, X.; Zhu, Y.; Tong, S.-S.; Yu, J.-N.; Xu, X.-M. Ergosterol-loaded poly(lactide-co-glycolide) nanoparticles with enhanced in vitro antitumor activity and oral bioavailability. Acta Pharmacol. Sin. 2016, 37, 834–844. [Google Scholar] [CrossRef]
- Xie, Y.; An, J.; Yang, G.; Wu, G.; Zhang, Y.; Cui, L.; Feng, Y. Enhanced Enzyme Kinetic Stability by Increasing Rigidity within the Active Site*. J. Boil. Chem. 2014, 289, 7994–8006. [Google Scholar] [CrossRef]
- Mateo, C.; Palomo, J.M.; Fernandez-Lorente, G.; Guisan, J.M.; Fernandez-Lafuente, R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym. Microb. Technol. 2007, 40, 1451–1463. [Google Scholar] [CrossRef]
- Li, P.; Chen, Q.; Wang, T.C.; Vermeulen, N.A.; Mehdi, B.L.; Dohnalkova, A.; Browning, N.D.; Shen, D.; Anderson, R.; Gómez-Gualdrón, D.A.; et al. Hierarchically Engineered Mesoporous Metal-Organic Frameworks toward Cell-free Immobilized Enzyme Systems. Chem 2018, 4, 1022–1034. [Google Scholar] [CrossRef]
- Alnoch, R.C.; Martini, V.P.; Glogauer, A.; Costa, A.C.D.S.; Piovan, L.; Müller-Santos, M.; De Souza, E.M.; Pedrosa, F.D.O.; Mitchell, D.A.; Krieger, N. Immobilization and Characterization of a New Regioselective and Enantioselective Lipase Obtained from a Metagenomic Library. PLoS ONE 2015, 10, e0114945. [Google Scholar] [CrossRef]
- Xu, L.; Cui, G.; Ke, C.; Fan, Y.; Yan, Y. Immobilized Burkholderia cepacia Lipase on pH-Responsive Pullulan Derivatives with Improved Enantioselectivity in Chiral Resolution. Catalysts 2018, 8, 13. [Google Scholar] [CrossRef]
- Mittersteiner, M.; Machado, T.M.; Jesus, P.C.D.; Brondani, P.B.; Scharf, D.R.; Wendhausen, R., Jr. Easy and Simple SiO2 Immobilization of Lipozyme CaLB-L: Its Use as a Catalyst in Acylation Reactions and Comparison with Other Lipases. J. Braz. Chem. Soc. 2017, 28, 1185–1192. [Google Scholar] [CrossRef]
- Fan, X.; Liang, W.; Li, Y.; Li, H.; Liu, X. Identification and immobilization of a novel cold-adapted esterase, and its potential for bioremediation of pyrethroid-contaminated vegetables. Microb. Cell Factories 2017, 16, 149. [Google Scholar] [CrossRef]
- Zdarta, J.; Jędrzak, A.; Klapiszewski, Ł.; Jesionowski, T. Immobilization of Cellulase on a Functional Inorganic–Organic Hybrid Support: Stability and Kinetic Study. Catalysts 2017, 7, 374. [Google Scholar] [CrossRef]
- Gao, J.; Jiang, Y.; Lu, J.; Han, Z.; Deng, J.; Chen, Y. Dopamine-functionalized mesoporous onion-like silica as a new matrix for immobilization of lipase Candida sp. 99-125. Sci. Rep. 2017, 7, 40395. [Google Scholar] [CrossRef]
- Míguez, N.; Gimeno-Pérez, M.; Fernández-Polo, D.; Cervantes, F.V.; Ballesteros, A.O.; Fernández-Lobato, M.; Ribeiro, M.H.; Plou, F.J. Immobilization of the β-fructofuranosidase from Xanthophyllomyces dendrorhous by Entrapment in Polyvinyl Alcohol and Its Application to Neo-Fructooligosaccharides Production. Catalysts 2018, 8, 201. [Google Scholar]
- Velasco-Lozano, S.; López-Gallego, F.; Rocha-Martin, J.; Guisán, J.M.; Favela-Torres, E. Improving enantioselectivity of lipase from Candida rugosa by carrier-bound and carrier-free immobilization. J. Mol. Catal. B Enzym. 2016, 130, 32–39. [Google Scholar] [CrossRef]
- Gilani, S.L.; Najafpour, G.D.; Heydarzadeh, H.D.; Moghadamnia, A. Enantioselective synthesis of (S)-naproxen using immobilized lipase on chitosan beads. Chirality 2017, 29, 304–314. [Google Scholar] [CrossRef]
- Silva, J.C.; Franca, P.R.L.; Converti, A.; Porto, S. Kinetic and thermodynamic characterization of a novel Aspergillus aculeatus URM4953 polygalacturonase. Comparison of free and calcium alginate-immobilized enzyme. Process Biochem. 2018, 74, 61–70. [Google Scholar] [CrossRef]
- Park, S.H.; Soetyono, F.; Kim, H.K. Cadaverine Production by Using Cross-Linked Enzyme Aggregate of Escherichia coli Lysine Decarboxylase. J. Microbiol. Biotechnol. 2017, 27, 289–296. [Google Scholar] [CrossRef] [Green Version]
Method | Support Material | Enzyme | Improved Enzyme Properties | Ref |
---|---|---|---|---|
Adsorption | Octadecyl Sepabeads and octyl sepharose resins | Fusarium verticillioides lipases | Substrate selectivity | [12] |
Adsorption | Accurel MP1000 | lipG9 | Substrate selectivity | [109] |
Adsorption | Modified pullulan polysaccharide | Burkholderia cepacia lipase | Substrate selectivity | [110] |
Adsorption | SiO2 | Candida antarctica B lipase | Substrate selectivity | [111] |
Adsorption | Mesoporous silica | Esterase | Substrate selectivity | [112] |
Adsorption | TiO2–lignin hybrid | Aspergillus niger cellulase | Thermal and chemical stability | [113] |
Adsorption | Mesoporous silica SBA-15 | Myoglobin and lysozyme | Acid stability and activity | [14] |
Adsorption | Dopamine-functionalized mesoporous onion-like silica | Candida sp. 99-125 lipase | Durability | [114] |
Adsorption | Epichlorohydrin cross-linked Carboxymethyl cellulose beads | Urease | Acid stability and thermostability | [49] |
Adsorption | Polyvinyl alcohol hydrogel | Xanthophyllomyces dendrorhous β-fructofuranosidase | Thermostability | [115] |
Adsorption | Magnetic nanoparticles | Candida rugosa lipase | Durability | [50] |
Covalent bond | Epoxy resin ECR8285 | SMG1-F278N lipase | Substrate selectivity | [13] |
Covalent bond | Magnetic Cellulose Nanocrystals | Pseudomonas cepacia lipase | Substrate selectivity | [51] |
Covalent bond | Agarose-based carriers/cross-linked aggregates | Candida rugosa lipase | Substrate selectivity | [116] |
Covalent bond | Chitosan beads | Lipase | Substrate selectivity | [117] |
Covalent bond | Amino C2 acrylate | Arylmalonate decarboxylase | Substrate selectivity | [52] |
Covalent bond | Calcium alginate beads | Aspergillus aculeatus polygalacturonase | Thermostability | [118] |
Covalent bond | Glutaraldehyde CLEA | Trametes versicolor & Fomes fomentarius laccases | Thermostability and durability | [56] |
Covalent bond | Glutaraldehyde CLEA | Escherichia coli lysine decarboxylase | Thermostability | [119] |
IL based | poly(VEImBr) | CalB | Activity | [90] |
IL based | Magnetic poly(ionic liquid) support | Cellulase | Activity and stability | [93] |
IL based | Periodic mesoporous organosilica | α-Amylase | Thermostability | [94] |
IL based | [Bmim][PF6] | Candida antarctica lipase B | Stability and reusability | [91] |
SCF based | Supercritical fluids CO2 | Multienzyme | Productivity | [101] |
SCF based | surface-modified mesoporous activated carbon | Horseradish peroxidase (HRP) | Thermostability and durability | [102] |
SCF based | Chitosan–glyoxyl–EDA–glu | Candida antarctica lipase B | Stability | [103] |
SCF based | Supercritical CO2 | Candida antarctica lipase B | Productivity | [100] |
MOFs | PCN-333(Al) | HRP & Cyt c & MP-11 | Higher affinity to Substrate and stability | [62] |
MOFs | Enzyme@SNF@ZIF-8 | Penicillin G acylase & catalase | Thermal/storage stability and durability | [72] |
MOFs | ZIF-8 | Carbonic anhydrase | Productivity | [68] |
MOFs | IRMOFs | Candida antarctica lipase B | Activity | [69] |
MOFs | ZIF-8 | Cyt c | Activity | [70] |
MOFs | csq-net Zr-based | Lactate dehydrogenase | Activity | [108] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Zhou, M.-C.; Liu, R.-L. Recent Developments in Carriers and Non-Aqueous Solvents for Enzyme Immobilization. Catalysts 2019, 9, 647. https://doi.org/10.3390/catal9080647
Zhao Z, Zhou M-C, Liu R-L. Recent Developments in Carriers and Non-Aqueous Solvents for Enzyme Immobilization. Catalysts. 2019; 9(8):647. https://doi.org/10.3390/catal9080647
Chicago/Turabian StyleZhao, Zongpei, Meng-Cheng Zhou, and Run-Lin Liu. 2019. "Recent Developments in Carriers and Non-Aqueous Solvents for Enzyme Immobilization" Catalysts 9, no. 8: 647. https://doi.org/10.3390/catal9080647