Influence of Stabilizing Ion Content on the Structure, Photoluminescence and Biological Properties of Zr1–xEuxO2–0.5x Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of the Zr1–xEuxO2–0.5x Nanoparticles
2.2. Characterization Methods
2.2.1. X-ray Diffraction of Zr1–xEuxO2–0.5x Nanoparticles
2.2.2. Energy-Dispersive X-ray Microanalysis of Zr1–xEuxO2–0.5x Nanoparticles
2.2.3. X-ray Fluorescence Analysis of Zr1–xEuxO2–0.5x Nanoparticles
2.2.4. Transmission Electron Microscopy of Zr1–xEuxO2–0.5x Nanoparticles with Microdiffraction
2.2.5. Raman Spectroscopy of Zr1–xEuxO2–0.5x Nanoparticles
2.2.6. Surface Area and Porosity Analysis of Zr1–xEuxO2–0.5x Nanoparticles
2.2.7. Electrophoresis Light Scattering of Zr1–xEuxO2–0.5x Nanoparticles
2.2.8. M.T.T. Assay of Zr1–xEuxO2–0.5x Nanoparticles
2.2.9. Photoluminescence Quantum Yield Measurements of Zr1–xEuxO2–0.5x Nanoparticles
2.2.10. Photoluminescence Spectroscopy of Zr1–xEuxO2–0.5x Nanoparticles
3. Results and Discussion
3.1. Structural Study
3.2. Photoluminesence Properties
3.3. Surface Properties
3.4. Biological Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xu, W.; Chang, Y.; Lee, G.H. Biomedical applications of lanthanide oxide nanoparticles. J. Biomater. Tissue Eng. 2017, 7, 757–769. [Google Scholar] [CrossRef]
- Gai, S.; Li, C.; Yang, P.; Lin, J. Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev. 2014, 114, 2343–2389. [Google Scholar] [CrossRef] [PubMed]
- Dacosta, M.V.; Doughan, S.; Han, Y.; Krull, U.J. Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review. Anal. Chim. Acta 2014, 832, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Tu, D.; Zheng, W.; Liu, Y.; Zhu, H.; Chen, X. Luminescent biodetection based on lanthanide-doped inorganic nanoprobes. Co-ord. Chem. Rev. 2014, 29, 13–29. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.; Tu, D. Lanthanide-Doped Luminescent Nanomaterials: From Fundamentals to Bioapplications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; p. 208. [Google Scholar] [CrossRef]
- Ceja-Fdez, A.; López-Luke, T.; Oliva, J.; Vivero-Escoto, J.; Gonzalez-Yebra, A.L.; Rojas, R.A.R.; Martínez-Pérez, A.; De La Rosa, E. Labeling of HeLa cells using ZrO2:Yb3+-Er3+ nanoparticles with upconversion emission. J. Biomed. Opt. 2015, 20, 046006. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Tu, D.; Zhu, H.; Ma, E.; Chen, X. Lanthanide-doped luminescent nano-bioprobes: From fundamentals to biodetection. Nanoscale 2013, 5, 1369–1384. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, S.; Tu, D.; Chen, Z.; Huang, M.; Zhu, H.; Ma, E.; Chen, X. Amine-functionalized lanthanide-doped zirconia nanoparticles: Optical spectroscopy, time-resolved fluorescence resonance energy transfer biodetection, and targeted imaging. J. Am. Chem. Soc. 2012, 134, 15083–15090. [Google Scholar] [CrossRef]
- Luo, W.; Liu, Y.; Chen, X. Lanthanide-doped semiconductor nanocrystals: Electronic structures and optical properties. Sci. China Mater. 2015, 58, 819–850. [Google Scholar] [CrossRef] [Green Version]
- Maciel, G.S.; Rakov, N.; Rakov, N. Photon conversion in lanthanide-doped powder phosphors: Concepts and applications. RSC Adv. 2015, 5, 17283–17295. [Google Scholar] [CrossRef]
- Chakraborty, A.; Debnath, G.H.; Saha, N.R.; Chattopadhyay, D.; Waldeck, D.H.; Mukherjee, P. Identifying the correct host–guest combination to sensitize trivalent lanthanide (guest) luminescence: Titanium dioxide nanoparticles as a model host system. J. Phys. Chem. C 2016, 120, 23870–23882. [Google Scholar] [CrossRef]
- Soares, M.R.; Rodrigues, J.; Santos, N.F.; Nico, C.; Carvalho, R.G.; Fernandes, A.J.S.; Graça, M.P.; Rino, L.; Neves, A.J.; Costa, F.M.; et al. Prospects on laser processed wide band gap oxides optical materials. In Proceedings of the Oxide-Based Materials and Devices IV; SPIE: Bellingham, WA, USA, 2013; Volume 8626, p. 862607. [Google Scholar]
- Sarkar, D.; Ganguli, S.; Samanta, T.; Mahalingam, V. Design of lanthanide-doped colloidal nanocrystals: Applications as phosphors, sensors, and photocatalysts. Langmuir 2019, 35, 6211–6230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamrakar, R.K.; Bisen, D.; Upadhyay, K.; Tiwari, S. Synthesis and thermoluminescence behavior of ZrO2:Eu3+ with variable concentration of Eu3+ doped phosphor. J. Radiat. Res. Appl. Sci. 2014, 7, 486–490. [Google Scholar] [CrossRef] [Green Version]
- Morales-Ramírez, A.D.J.; García-Murillo, A.; Carrillo-Romo, F.; García-Hernández, M.; Palmerin, J.M.; Guerrero, R.R. Preparation and scintillating properties of sol-gel Eu3+, Tb3+ co-doped Lu2O3 nanopowders. Int. J. Mol. Sci. 2011, 12, 6240–6254. [Google Scholar] [CrossRef] [Green Version]
- Gallino, F.; Di Valentin, C.; Pacchioni, G. Band gap engineering of bulk ZrO2 by Ti doping. Phys. Chem. Chem. Phys. 2011, 13, 17667–17675. [Google Scholar] [CrossRef]
- Zhang, H.; An, Z.; Li, F.; Tang, Q.; Lu, K.; Li, W. Synthesis and characterization of mesoporous c-ZrO2 microspheres consisting of peanut-like nano-grains. J. Alloy. Compd. 2008, 464, 569–574. [Google Scholar] [CrossRef]
- De La Rosa, E.; Diaz-Torres, L.; Salas, P.; Rodríguez, R. Visible light emission under UV and IR excitation of rare earth doped ZrO2 nanophosphor. Opt. Mater. 2005, 27, 1320–1325. [Google Scholar] [CrossRef]
- Almjasheva, O.; Garabadzhiu, A.; Kozina, Y.; Litvinchuk, L.; Dobritsa, V. Biological effect of zirconium dioxide-based nanoparticles. Nanosyst. Phys. Chem. Math. 2017, 8, 391–396. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Chen, I.-W.; Penner-Hahn, J.E. X-ray-absorption studies of zirconia polymorphs. I. Characteristic local structures. Phys. Rev. B. 1993, 48, 10063–10073. [Google Scholar] [CrossRef]
- Li, P.; Chen, I.-W.; Penner-Hahn, J.E. Effect of dopants on zirconia stabilization-An X-ray absorption study: I., Trivalent Dopants. J. Am. Ceram. Soc. 1994, 77, 118–128. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.K.; Natarajan, V. Synthesis, characterization and photoluminescence spectroscopy of lanthanide ion doped oxide materials. BARC Newsl. 2015, 46, 14–21. [Google Scholar]
- Tiseanu, C.; Parvulescu, V.I.; Avram, D.; Cojocaru, B.; Apostol, N.; Vela-Gonzalez, A.V.; Sanchez-Dominiguez, M. Structural, down- and phase selective up-conversion emission properties of mixed valent Pr doped into oxides with tetravalent cations. Phys. Chem. Chem. Phys. 2014, 16, 5793–5802. [Google Scholar] [CrossRef] [PubMed]
- Hui, Y.; Zhao, S.; Xu, J.; Zhu, L.; Zhou, X.; Zou, B.; Wang, Y.; Cao, X. Doping concentration of Eu3+ as a fluorescence probe for phase transformation of zirconia. J. Rare Earths 2015, 33, 717–725. [Google Scholar] [CrossRef]
- Marin, R.; Sponchia, G.; Zucchetta, E.; Riello, P.; Enrichi, F.; De Portu, G.; Benedetti, A. Monitoring the t → m martensitic phase transformation by photoluminescence emission in Eu3+-doped zirconia powders. J. Am. Ceram. Soc. 2013, 96, 2628–2635. [Google Scholar] [CrossRef]
- Tanner, P.A. Some misconceptions concerning the electronic spectra of tri-positive europium and cerium. Chem. Soc. Rev. 2013, 42, 5090–5101. [Google Scholar] [CrossRef] [PubMed]
- Bünzli, J.-C.G.; Eliseeva, S.V. Basics of Lanthanide Photophysics; Springer Series on Fluorescence; Springer Science + Business Media, LLC: Berlin/Heidelberg, Germany, 2010; Volume 7, pp. 1–45. [Google Scholar] [CrossRef] [Green Version]
- Tiseanu, C.; Cojocaru, B.; Parvulescu, V.I.; Sanchez-Dominiguez, M.; Primus, P.A.; Boutonnet, M. Order and disorder effects in nano-ZrO2 investigated by micro-Raman and spectrally and temporarily resolved photoluminescence. Phys. Chem. Chem. Phys. 2012, 14, 12970. [Google Scholar] [CrossRef]
- Bugrov, A.; Smyslov, R.Y.; Zavialova, A.; Kirilenko, D.A.; Pankin, D. Phase composition and photoluminescence correlations in nanocrystalline ZrO2:Eu3+ phosphors synthesized under hydrothermal conditions. Nanosyst. Phys. Chem. Math. 2018, 9, 378–388. [Google Scholar] [CrossRef] [Green Version]
- Meetei, S.D.; Singh, S.D. Effects of crystal size, structure and quenching on the photoluminescence emission intensity, lifetime and quantum yield of ZrO2:Eu3+ nanocrystals. J. Lumin. 2014, 147, 328–335. [Google Scholar] [CrossRef]
- Ahemen, I.; Dejene, F.B. Effect of Eu3+ ion concentration on phase transition, site symmetry and quantum efficiency of ZrO2 nanocrystal rods. J. Nanosci. Nanotechnol. 2018, 18, 2429–2440. [Google Scholar] [CrossRef]
- Quan, Z.; Wang, L.; Lin, J. Synthesis and characterization of spherical ZrO2:Eu3+ phosphors by spray pyrolysis process. Mater. Res. Bull. 2005, 40, 810–820. [Google Scholar] [CrossRef]
- Smits, K.; Grigorjeva, L.; Millers, D.; Sarakovskis, A.; Opalinska, A.; Fidelus, J.D.; Lojkowski, W. Europium doped zirconia luminescence. Opt. Mater. 2010, 32, 827–831. [Google Scholar] [CrossRef]
- Tamrakar, R.K.; Bisen, D.; Upadhyay, K. Photoluminescence behavior of ZrO2:Eu3+ with variable concentration of Eu3+ doped phosphor. J. Radiat. Res. Appl. Sci. 2015, 8, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Lovisa, L.X.; Andrés, J.; Gracia, L.; Li, M.S.; Paskocimas, C.A.; Bomio, M.R.D.; Araújo, V.D.; Longo, E.; Motta, F.V. Photoluminescent properties of ZrO2:Tm3+, Tb3+, Eu3+ powders—A combined experimental and theoretical study. J. Alloy. Compd. 2017, 695, 3094–3103. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, N.; Kuraria, R.; Kuraria, S. Effect of variable trivalent europium concentration on photo- and thermoluminescence of zirconium dioxide nanophosphors. Mater. Sci. Semicond. Process. 2015, 31, 214–222. [Google Scholar] [CrossRef]
- Bugrov, A.; Smyslov, R.Y.; Zavialova, A.; Kopitsa, G.P. The influence of chemical prehistory on the structure, photoluminescent properties, surface and biological characteristics of Zr0.98Eu0.02O1.99 nanophosphors. Nanosyst. Phys. Chem. Math. 2019, 10, 164–175. [Google Scholar] [CrossRef] [Green Version]
- Colbea, C.; Avram, D.; Cojocaru, B.; Negrea, R.; Ghica, C.; Kessler, V.G.; Seisenbaeva, G.A.; Parvulescu, V.I.; Tiseanu, C. Full tetragonal phase stabilization in ZrO2 nanoparticles using wet impregnation: Interplay of host structure, dopant concentration and sensitivity of characterization technique. Nanomaterials 2018, 8, 988. [Google Scholar] [CrossRef] [Green Version]
- Wysokińska, E.; Cichos, J.; Zioło, E.; Bednarkiewicz, A.; Strządała, L.; Karbowiak, M.; Hreniak, D.; Kałas, W. Cytotoxic interactions of bare and coated NaGdF4:Yb3+:Er3+ nanoparticles with macrophage and fibroblast cells. Toxicol. Vitr. 2016, 32, 16–25. [Google Scholar] [CrossRef]
- Lutterotti, L.; Matthies, S.; Wenk, H.; Schultz, A.S.; Richardson, J.W. Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J. Appl. Phys. 1997, 81, 594–600. [Google Scholar] [CrossRef]
- Kirilenko, D.A.; Dideykin, A.; Aleksenskiy, A.; Sitnikova, A.; Konnikov, S.; Vul’, A. One-step synthesis of a suspended ultrathin graphene oxide film: Application in transmission electron microscopy. Micron 2015, 68, 23–26. [Google Scholar] [CrossRef]
- Fibrosis Research; Springer Science + Business Media, LLC: Berlin/Heidelberg, Germany, 2005; Volume 117, pp. 1–392.
- Bugrov, A.; Zavialova, A.Y.; Smyslov, R.Y.; Anan’Eva, T.D.; Vlasova, E.N.; Mokeev, M.V.; Kryukov, A.E.; Kopitsa, G.P.; Pipich, V. Luminescence of Eu3+ ions in hybrid polymer-inorganic composites based on poly(methyl methacrylate) and zirconia nanoparticles. Luminescence 2018, 33, 837–849. [Google Scholar] [CrossRef] [PubMed]
- De Mello, J.C.; Wittmann, H.F.; Friend, R.H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 1997, 9, 230–232. [Google Scholar] [CrossRef]
- Vasilef, I. QtiPlot: Data Analysis and Scientific Visualization. Available online: http://www.qtiplot.com/ (accessed on 15 November 2020).
- Bersani, D.; Lottici, P.P.; Rangel, G.; Ramos, E.; Pecchi, G.; Gomez, R.; Lopez, T. Micro-Raman study of indium doped zirconia obtained by sol–gel. J. Non-Crystalline Solids 2004, 345, 116–119. [Google Scholar] [CrossRef]
- Basahel, S.N.; Ali, T.T.; Mokhtar, M.; Narasimharao, K. Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange. Nanoscale Res. Lett. 2015, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Gazzoli, D.; Mattei, G.; Valigi, M. Raman and X-ray investigations of the incorporation of Ca2+ and Cd2+ in the ZrO2 structure. J. Raman Spectrosc. 2007, 38, 824–831. [Google Scholar] [CrossRef]
- Kontoyannis, C.G.; Orkoula, M. Quantitative determination of the cubic, tetragonal and monoclinic phases in partially stabilized zirconias by Raman spectroscopy. J. Mater. Sci. 1994, 29, 5316–5320. [Google Scholar] [CrossRef]
- Guo, L.; Li, M.; Zhang, Y.; Ye, F. Improved toughness and thermal expansion of non-stoichiometry Gd2–xZr2+xO7+x/2 ceramics for thermal barrier coating application. J. Mater. Sci. Technol. 2016, 32, 28–33. [Google Scholar] [CrossRef]
- Bünzli, J.-C.G. On the design of highly luminescent lanthanide complexes. Co-ord. Chem. Rev. 2015, 19–47. [Google Scholar] [CrossRef]
- Yakimanskii, A.V.; Goikhman, M.Y.; Podeshvo, I.V.; Anan’Eva, T.D.; Nekrasova, T.N.; Smyslov, R.Y. Luminescence of Ln3+ lanthanide complexes in polymer matrices. Polym. Sci. Ser. A 2012, 54, 921–941. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.; Li, Y. Preparation and characterization of ZrO2:Eu3+ phosphors. J. Alloy. Compd. 2004, 381, 266–271. [Google Scholar] [CrossRef]
- Ebendorff-Heidepriem, H.; Ehrt, D. Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses. Opt. Mater. 2000, 15, 7–25. [Google Scholar] [CrossRef]
- Bugrov, A.; Smyslov, R.Y.; Anan’Eva, T.D.; Zavialova, A.; Kirilenko, D.A.; Almjasheva, O. Soluble and insoluble polymer-inorganic systems based on poly(methyl methacrylate), modified with ZrO2-LnO1.5 (Ln = Eu, Tb) nanoparticles: Comparison of their photoluminescence. J. Lumin. 2019, 207, 157–168. [Google Scholar] [CrossRef]
- Prakasam, M.; Valsan, S.; Lu, Y.; Balima, F.; Lu, W.; Piticescu, R.; Largeteau, A. Nanostructured pure and doped zirconia: Synthesis and sintering for SOFC and optical applications. Sinter. Technol. Method Appl. 2018, 2018, 85–105. [Google Scholar]
- Rainho, J.; Ananias, D.; Lin, Z.; Ferreira, A.; Carlos, L.D.; Rocha, J. Photoluminescence and local structure of Eu(III)-doped zirconium silicates. J. Alloy. Compd. 2004, 374, 185–189. [Google Scholar] [CrossRef]
- Ishida, H.; Bünzli, J.-C.; Beeby, A. Guidelines for measurement of luminescence spectra and quantum yields of inorganic and organometallic compounds in solution and solid state (IUPAC Technical Report). Pure Appl. Chem. 2016, 88, 701–711. [Google Scholar] [CrossRef] [Green Version]
- Kouva, S.; Honkala, K.; Lefferts, L.; Kanervo, J. Review: Monoclinic zirconia, its surface sites and their interaction with carbon monoxide. Catal. Sci. Technol. 2015, 5, 3473–3490. [Google Scholar] [CrossRef] [Green Version]
- Tokiy, N.V.; Konstantinova, T.Y.; Savina, D.L.; Tokiy, V.V. Modeling of dehydration and dehydrogenation in pure and Ba-, Ca-, Sr- or Y-modified zirconia nanolayer. In Hydrogen Materials Science and Chemistry of Carbon Nanomaterials; Springer: Dordrecht, The Netherlands, 2004; Volume 172, pp. 291–298. [Google Scholar] [CrossRef]
- Chen, B.-H.; Inbaraj, B.S. Various physicochemical and surface properties controlling the bioactivity of cerium oxide nanoparticles. Crit. Rev. Biotechnol. 2018, 38, 1003–1024. [Google Scholar] [CrossRef]
- Nakamura, M.; Inuzuka, M.; Hashimoto, K.; Nagai, A.; Yamashita, K. Improving bioactivity and durability of yttria-stabilized zirconia. J. Mater. Sci. 2011, 46, 7335–7343. [Google Scholar] [CrossRef]
- García-Moncada, N.; Bobadilla, L.F.; Poyato, R.; Lopez--Cartes, C.; Romero-Sarria, F.; Centeno, M.; Odriozola, J. A direct in situ observation of water-enhanced proton conductivity of Eu-doped ZrO2: Effect on WGS reaction. Appl. Catal. B Environ. 2018, 231, 343–356. [Google Scholar] [CrossRef]
- Patil, S.; Sandberg, A.; Heckert, E.; Self, W.; Seal, S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 2007, 28, 4600–4607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
EuO1.5 Content by Synthesis Charge, mol.% | T.E.M. Nano-particle Size, 1) nm | Data of Fluorescence Analysis Calculated as Oxides, mol.% | Data of S.E.M.–E.D.X. Microanalysis Calculated as Oxides, mol.% | ||
---|---|---|---|---|---|
ZrO2 | EuO1.5 | ZrO2 | EuO1.5 | ||
2 | 11.4 ± 0.2 | 97.8 ± 2.9 | 2.2 ± 0.1 | 97.1 ± 4.9 | 2.9 ± 0.2 |
5 | 13.3 ± 0.3 | 94.6 ± 2.8 | 5.4 ± 0.2 | 92.6 ± 4.6 | 7.4 ± 0.4 |
7 | 10.1 ± 0.2 | 92.8 ± 2.9 | 7.2 ± 0.2 | 90.5 ± 4.5 | 9.5 ± 0.5 |
10 | 11.1 ± 0.2 | 91.2 ± 2.9 | 8.8 ± 0.3 | 88.9 ± 4.4 | 11.1 ± 0.6 |
15 | 9.2 ± 0.2 | 86.4 ± 2.6 | 13.6 ± 0.4 | 88 ± 4.4 | 12 ± 0.6 |
EuO1.5 Content by Synthesis, mol.% | φ, % | τPL,ms | β | Df = 2 – β | χred2 1) |
---|---|---|---|---|---|
2 | 0.54 | 0.84 ± 0.43 | 0.70 ± 0.12 | 1.30 | 12.54 |
5 | 0.63 | 0.27 ± 0.02 | 0.638 ± 0.019 | 1.362 | 8.37 |
7 | 1.16 | 0.33 ± 0.01 | 0.633 ± 0.012 | 1.367 | 4.93 |
10 | 1.25 | 0.83 ± 0.28 | 0.81 ± 0.10 | 1.19 | 12.49 |
15 | 2.11 | 0.28 ± 0.04 | 0.62 ± 0.02 | 1.39 | 1.76 |
EuO1.5 Content by Synthesis, mol.% | SBET, m2/g | Dpore, nm | Vpore, 1 cm3/g | ζ-potential, mV |
---|---|---|---|---|
2 | 80.2 ± 2.4 | 8.01 | 0.24 | −8.7 |
5 | 82.2 ± 3.3 | 8.04 | 0.23 | 3.1 |
7 | 85.5 ± 1.9 | 7.97 | 0.21 | 11.1 |
10 | 87.4 ± 3.9 | 7.96 | 0.21 | 14.9 |
15 | 111.3 ± 3.4 | 6.19 | 0.22 | 16.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bugrov, A.N.; Smyslov, R.Y.; Zavialova, A.Y.; Kopitsa, G.P.; Khamova, T.V.; Kirilenko, D.A.; Kolesnikov, I.E.; Pankin, D.V.; Baigildin, V.A.; Licitra, C. Influence of Stabilizing Ion Content on the Structure, Photoluminescence and Biological Properties of Zr1–xEuxO2–0.5x Nanoparticles. Crystals 2020, 10, 1038. https://doi.org/10.3390/cryst10111038
Bugrov AN, Smyslov RY, Zavialova AY, Kopitsa GP, Khamova TV, Kirilenko DA, Kolesnikov IE, Pankin DV, Baigildin VA, Licitra C. Influence of Stabilizing Ion Content on the Structure, Photoluminescence and Biological Properties of Zr1–xEuxO2–0.5x Nanoparticles. Crystals. 2020; 10(11):1038. https://doi.org/10.3390/cryst10111038
Chicago/Turabian StyleBugrov, Alexander N., Ruslan Yu. Smyslov, Anastasia Yu. Zavialova, Gennady P. Kopitsa, Tamara V. Khamova, Demid A. Kirilenko, Ilya E. Kolesnikov, Dmitrii V. Pankin, Vadim A. Baigildin, and Christophe Licitra. 2020. "Influence of Stabilizing Ion Content on the Structure, Photoluminescence and Biological Properties of Zr1–xEuxO2–0.5x Nanoparticles" Crystals 10, no. 11: 1038. https://doi.org/10.3390/cryst10111038
APA StyleBugrov, A. N., Smyslov, R. Y., Zavialova, A. Y., Kopitsa, G. P., Khamova, T. V., Kirilenko, D. A., Kolesnikov, I. E., Pankin, D. V., Baigildin, V. A., & Licitra, C. (2020). Influence of Stabilizing Ion Content on the Structure, Photoluminescence and Biological Properties of Zr1–xEuxO2–0.5x Nanoparticles. Crystals, 10(11), 1038. https://doi.org/10.3390/cryst10111038