Effect of Strains and V-Shaped Pit Structures on the Performance of GaN-Based Light-Emitting Diodes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. LED Structure and TEM Images
3.2. CL Monochromatic Analysis
3.3. Depth-Resolved Confocal Raman Spectroscopy Analysis
3.4. CL Spectra and Spatial Distribution
3.5. PL Measurement and IQE Analysis
3.6. Optical and Electrical Properties of LED Chips by EL Measurement
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ponce, F.; Bour, D. Nitride-based semiconductors for blue and green light-emitting devices. Nature 1997, 386, 351. [Google Scholar] [CrossRef]
- Nakamura, S. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science 1998, 281, 956–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orton, J.; Foxon, C. Group III nitride semiconductors for short wavelength light-emitting devices. Rep. Prog. Phys. 1998, 61, 1. [Google Scholar] [CrossRef]
- Ryu, H.; Ha, K.; Lee, S.; Jang, T.; Son, J.; Paek, H.; Sung, Y.; Kim, H.; Kim, K.; Nam, O. High-performance blue InGaN laser diodes with single-quantum-well active layers. IEEE Photonics Technol. Lett. 2007, 19, 1717–1719. [Google Scholar] [CrossRef]
- Yoshida, S. Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates. Appl. Phys. Lett. 1983, 42, 427. [Google Scholar] [CrossRef]
- Wu, X.H.; Fini, P.; Tarsa, E.J.; Heying, B.; Keller, S.; Mishra, U.K.; DenBaars, S.P.; Speck, J.S. Dislocation generation in GaN heteroepitaxy. J. Cryst. Growth 1998, 189–190, 231–243. [Google Scholar] [CrossRef]
- Wu, J.J.; Wang, K.; Yu, T.J.; Zhang, G.Y. GaN substrate and GaN homo-epitaxy for LEDs: Progress and challenges. Chin. Phys. B 2015, 24, 068106. [Google Scholar] [CrossRef]
- Ponce, F.; Major, J., Jr.; Plano, W.; Welch, D. Crystalline structure of AlGaN epitaxy on sapphire using AlN buffer layers. Appl. Phys. Lett. 1994, 65, 2302–2304. [Google Scholar] [CrossRef]
- Usui, A.; Sunakawa, H.; Sakai, A. Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy. Jpn. J. Appl. Phys. 1997, 36, L899. [Google Scholar] [CrossRef] [Green Version]
- Sasaoka, C.; Sunakawa, H.; Kimura, A.; Nido, M.; Usui, A.; Sakai, A. High-quality InGaN MQW on low-dislocation-density GaN substrate grown by hydride vapor-phase epitaxy. J. Cryst. Growth 1998, 189–190, 61–66. [Google Scholar] [CrossRef]
- Lester, S.D.; Ponce, F.A.; Craford, M.G.; Steigerwald, D.A. High dislocation densities in high efficiency GaN-based light-emitting diodes. Appl. Phys. Lett. 1995, 66, 1249. [Google Scholar] [CrossRef]
- Sugahara, T.; Sato, H.; Hao, M.; Naoi, Y.; Kurai, S.; Tottori, S.; Yamashita, K.; Nishino, K.; Romano, L.T.; Sakai, S. Direct evidence that dislocations are non-radiative recombination centers in GaN. Jpn. J. Appl. Phys. 1998, 37, L398. [Google Scholar] [CrossRef]
- Dai, Q.; Schubert, M.F.; Kim, M.H.; Kim, J.K.; Schubert, E.F.; Koleske, D.D.; Crawford, M.H.; Lee, S.R.; Fischer, A.J.; Thaler, G.; et al. Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities. Appl. Phys. Lett. 2009, 94, 111109. [Google Scholar] [CrossRef] [Green Version]
- Petroff, P.; Logan, R.; Savage, A. Nonradiative recombination at dislocations in III–V compound semiconductors. J. Microsc. 1980, 118, 255–261. [Google Scholar] [CrossRef]
- Sugahara, T.; Hao, M.; Wang, T.; Nakagawa, D.; Naoi, Y.; Nishino, K.; Sakai, S. Role of dislocation in InGaN phase separation. Jpn. J. Appl. Phys. 1998, 37, L1195. [Google Scholar] [CrossRef]
- Schubert, E.F.; Kim, J.K. Solid-state light sources getting smart. Science 2005, 308, 1274–1278. [Google Scholar] [CrossRef]
- Krames, M.; Bhat, J.; Collins, D.; Gardner, N.; Götz, W.; Lowery, C.; Ludowise, M.; Martin, P.; Mueller, G.; Mueller-Mach, R. High-Power III-Nitride Emitters for Solid-State Lighting. Physica Status Solidi (A) 2002, 192, 237–245. [Google Scholar] [CrossRef]
- Nizamoglu, S.; Demir, H.V. Hybrid white light sources based on layer-by-layer assembly of nanocrystals on near-UV emitting diodes. Nanotechnology 2007, 18, 405702. [Google Scholar] [CrossRef]
- Fang, Z.; Lin, D.; Kang, J.; Kong, J.; Shen, W. Interface modification of the InGaN/GaN quantum wells: The strain pre-relief effect. Nanotechnology 2009, 20, 235401. [Google Scholar] [CrossRef]
- Chen, Y.; Takeuchi, T.; Amano, H.; Akasaki, I.; Yamada, N.; Kaneko, Y.; Wang, S.Y. Pit formation in GaInN quantum wells. Appl. Phys. Lett. 1998, 72, 710. [Google Scholar] [CrossRef]
- Shiojiri, M.; Chuo, C.C.; Hsu, J.T.; Yang, J.R.; Saijo, H. Structure and formation mechanism of V defects in multiple InGaN/GaN quantum well layers. J. Appl. Phys. 2006, 99, 073505. [Google Scholar] [CrossRef]
- Wu, X.H.; Elsass, C.R.; Abare, A.; Mack, M.; Keller, S.; Petroff, P.M.; DenBaars, S.P.; Speck, J.S. Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells. Appl. Phys. Lett. 1998, 72, 692–694. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.; Tak, Y.; Chae, S.; Kim, J.-Y.; Park, Y. Effect of V-shaped pit size on the reverse leakage current of InGaN/GaN light-emitting diodes. IEEE Electron Device Lett. 2013, 34, 1409–1411. [Google Scholar] [CrossRef]
- Hangleiter, A.; Hitzel, F.; Netzel, C.; Fuhrmann, D.; Rossow, U.; Ade, G.; Hinze, P. Suppression of nonradiative recombination by V-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency. Phys. Rev. Lett. 2005, 95, 127402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurai, S.; Higaki, S.; Imura, N.; Okawa, K.; Makio, R.; Okada, N.; Tadatomo, K.; Yamada, Y. Potential Barrier formed around dislocations in InGaN quantum well structures by spot cathodoluminescence measurements. Physica Status Solidi (B) 2018, 255, 1700358. [Google Scholar] [CrossRef]
- Wang, C.H.; Chen, J.R.; Chiu, C.H.; Kuo, H.C.; Li, Y.L.; Lu, T.C.; Wang, S.C. Temperature-Dependent Electroluminescence Efficiency in Blue InGaN–GaN Light-Emitting Diodes With Different Well Widths. IEEE Photonics Technol. Lett. 2010, 22, 236–238. [Google Scholar] [CrossRef]
- Kim, J.; Cho, Y.-H.; Ko, D.-S.; Li, X.-S.; Won, J.-Y.; Lee, E.; Park, S.-H.; Kim, J.-Y.; Kim, S. Influence of V-pits on the efficiency droop in InGaN/GaN quantum wells. Opt. Express 2014, 22, A857–A866. [Google Scholar] [CrossRef]
- Okada, N.; Kashihara, H.; Sugimoto, K.; Yamada, Y.; Tadatomo, K. Controlling potential barrier height by changing V-shaped pit size and the effect on optical and electrical properties for InGaN/GaN based light-emitting diodes. J. Appl. Phys. 2015, 117, 025708. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, X. Effect of V-pits embedded InGaN/GaN superlattices on optical and electrical properties of GaN-based green light-emitting diodes. Physica Status Solidi (A) 2017, 214, 1600782. [Google Scholar] [CrossRef]
- Wu, X.; Liu, J.; Jiang, F. Hole injection from the sidewall of V-shaped pits into c-plane multiple quantum wells in InGaN light emitting diodes. J. Appl. Phys. 2015, 118, 164504. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Tsai, T.-Y.; Yen, C.-H.; Chen, L.-Y.; Tsai, T.-H.; Liu, W.-C. Characteristics of a GaN-based light-emitting diode with an inserted p-GaN/i-InGaN superlattice structure. IEEE J. Quantum Electron. 2010, 46, 492–498. [Google Scholar] [CrossRef]
- Armstrong, A.M.; Bryant, B.N.; Crawford, M.H.; Koleske, D.D.; Lee, S.R.; Wierer, J.J., Jr. Defect-reduction mechanism for improving radiative efficiency in InGaN/GaN light-emitting diodes using InGaN underlayers. J. Appl. Phys. 2015, 117, 134501. [Google Scholar] [CrossRef]
- Lee, K.; Lee, C.-R.; Lee, J.H.; Chung, T.-H.; Ryu, M.-Y.; Jeong, K.-U.; Leem, J.-Y.; Kim, J.S. Influences of Si-doped graded short-period superlattice on green InGaN/GaN light-emitting diodes. Opt. Express 2016, 24, 7743–7751. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Lee, C.-R.; Chung, T.-H.; Park, J.; Leem, J.-Y.; Jeong, K.-U.; Kim, J.S. Influences of graded superlattice on the electrostatic discharge characteristics of green InGaN/GaN light-emitting diodes. J. Cryst. Growth 2017, 464, 138–142. [Google Scholar] [CrossRef]
- Chen, S.-W.; Li, H.; Lu, T.-C. Improved performance of GaN based light emitting diodes with ex-situ sputtered AlN nucleation layers. AIP Adv. 2016, 6, 045311. [Google Scholar] [CrossRef]
- Davydov, V.Y.; Kitaev, Y.E.; Goncharuk, I.N.; Smirnov, A.N.; Graul, J.; Semchinova, O.; Uffmann, D.; Smirnov, M.B.; Mirgorodsky, A.P.; Evarestov, R.A. Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys. Rev. B 1998, 58, 12899–12907. [Google Scholar] [CrossRef] [Green Version]
- Harima, H. Properties of GaN and related compounds studied by means of Raman scattering. J. Phys. Condens. Matter 2002, 14, R967–R993. [Google Scholar] [CrossRef]
- Kisielowski, C.; Krüger, J.; Ruvimov, S.; Suski, T.; Ager, J.W.; Jones, E.; Liliental-Weber, Z.; Rubin, M.; Weber, E.R.; Bremser, M.D.; et al. Strain-related phenomena in GaN thin films. Phys. Rev. B 1996, 54, 17745–17753. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Heller, E.; Dorsey, D.; Vetury, R.; Graham, S. Analysis of the residual stress distribution in AlGaN/GaN high electron mobility transistors. J. Appl. Phys. 2013, 113, 093510. [Google Scholar] [CrossRef]
- Wagner, J.-M.; Bechstedt, F. Properties of strained wurtzite GaN and AlN: Ab initio studies. Phys. Rev. B 2002, 66, 115202. [Google Scholar] [CrossRef]
- Kumano, H.; Hoshi, K.-I.; Tanaka, S.; Suemune, I.; Shen, X.-Q.; Riblet, P.; Ramvall, P.; Aoyagi, Y. Effect of indium doping on the transient optical properties of GaN films. Appl. Phys. Lett. 1999, 75, 2879–2881. [Google Scholar] [CrossRef] [Green Version]
- Jasinski, J.; Liliental-Weber, Z. Extended defects and polarity of hydride vapor phase epitaxy GaN. J. Electron. Mater. 2002, 31, 429–436. [Google Scholar] [CrossRef]
- Li, C.-K.; Wu, C.-K.; Hsu, C.-C.; Lu, L.-S.; Li, H.; Lu, T.-C.; Wu, Y.-R. 3D numerical modeling of the carrier transport and radiative efficiency for InGaN/GaN light emitting diodes with V-shaped pits. AIP Adv. 2016, 6, 055208. [Google Scholar] [CrossRef] [Green Version]
Sample | Thickness of nGaN (μm) | Growth Temperature of Prestrained Layers (°C) |
---|---|---|
A | 2 | 800 |
B | 4 | 800 |
C | 6 | 800 |
D | 2 | 900 |
E | 4 | 900 |
F | 6 | 900 |
Sample | Vf (V) | Po (mW) |
---|---|---|
A | 3.39 | 704 |
B | 3.32 | 701 |
C | 3.31 | 680 |
D | 5.05 | 551 |
E | 3.98 | 560 |
F | 3.42 | 633 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-W.; Chang, C.-J.; Lu, T.-C. Effect of Strains and V-Shaped Pit Structures on the Performance of GaN-Based Light-Emitting Diodes. Crystals 2020, 10, 311. https://doi.org/10.3390/cryst10040311
Chen S-W, Chang C-J, Lu T-C. Effect of Strains and V-Shaped Pit Structures on the Performance of GaN-Based Light-Emitting Diodes. Crystals. 2020; 10(4):311. https://doi.org/10.3390/cryst10040311
Chicago/Turabian StyleChen, Shuo-Wei, Chia-Jui Chang, and Tien-Chang Lu. 2020. "Effect of Strains and V-Shaped Pit Structures on the Performance of GaN-Based Light-Emitting Diodes" Crystals 10, no. 4: 311. https://doi.org/10.3390/cryst10040311
APA StyleChen, S. -W., Chang, C. -J., & Lu, T. -C. (2020). Effect of Strains and V-Shaped Pit Structures on the Performance of GaN-Based Light-Emitting Diodes. Crystals, 10(4), 311. https://doi.org/10.3390/cryst10040311