Magnetic Nanostructures Embedded in III-Nitrides: Assembly and Performance
Abstract
:1. Introduction
2. Mn-Doped GaN
2.1. (Ga)MnN Embedded Magnetic Nanoclusters in GaN
2.2. Summary of Secondary Phases Observed in GaMnN Layers
3. Fe-Doped GaN
3.1. Embedded FeN Magnetic Nanocrystals and Nanoclusters in Fe-Doped GaN
3.2. Tuning the Structural and Magnetic Properties of (Ga)FeN Nanocrystals in GaN
3.3. Summary of the Secondary Phases Observed in GaFeN
4. Cr-Doped III-Nitrides
4.1. Phase Separation in AlCrN Layers
4.2. Embedded CrN Nanostructures in GaN
4.3. Summary of Secondary Phases Observed in III-Nitrides Doped with Cr
5. Gd-Doped GaN
5.1. Structure and Magnetism of Secondary Phases in GaGdN
5.2. Summary of Secondary Phases Observed in GaGd
6. Summary and Outlook
Funding
Acknowledgments
Conflicts of Interest
References
- Binasch, G.; Gruenberg, P.; Saurenbach, F.; Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 1989, 39, 4828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baibich, M.N.; Broto, J.M.; Fert, A.; Dau, F.N.V.; Petroff, F.; Etienne, P.; Creuzet, G.; Friedrich, A.; Chazelas, J. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett. 1988, 61, 2472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furdyna, J.K.; Kossut, J. Diluted Magnetic Semiconductors; Academic Press: New York, NY, USA, 1988. [Google Scholar]
- Dietl, T. Diluted Magnetic Semiconductors; North-Holland: New York, NY, USA, 1994. [Google Scholar]
- Ohno, H. Making Nonmagnetic Semiconductors Ferromagnetic. Science 1998, 281, 951. [Google Scholar] [CrossRef]
- Chiba, D.; Sawicki, M.; Nishitani, Y.; Nakatani, Y.; Matsukura, F.; Ohno, H. Magnetization vector manipulation by electric fields. Nature 2008, 455, 515. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yang, X.; Yang, H.F.; Zhao, J.; Misuraca, J.; Xiong, P.; Von Molnár, S. Enhancing the Curie Temperature of Ferromagnetic Semiconductor (Ga,Mn)As to 200 K via Nanostructure Engineering. Nano Lett. 2011, 11, 2584–2589. [Google Scholar] [CrossRef]
- Dietl, T.; Ohno, H.; Matsukura, F.; Cibert, J.; Ferrand, D. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science 2000, 287, 1019. [Google Scholar] [CrossRef] [Green Version]
- Bonanni, A.; Dietl, T. A story of high-temperature ferromagnetism in semiconductors. Chem. Soc. Rev. 2010, 39, 528. [Google Scholar] [CrossRef] [Green Version]
- Dietl, T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 2010, 9, 965–974. [Google Scholar] [CrossRef] [Green Version]
- Dietl, T.; Sato, K.; Fukushima, T.; Bonanni, A.; Jamet, M.; Barski, A.; Kuroda, S.; Tanaka, M.; Hai, P.N.; Katayama-Yoshida, H. Spinodal nanodecomposition in semiconductors doped with transition metals. Rev. Mod. Phys. 2010, 87, 1311. [Google Scholar] [CrossRef] [Green Version]
- Coey, J.; Smith, P. Magnetic nitrides. J. Magn. Magn. Mater. 1999, 200, 405–424. [Google Scholar] [CrossRef]
- Chen, L.; Matsukura, F.; Ohno, H. Direct-current voltages in (Ga,Mn)As structures induced by ferromagnetic resonance. Nat. Commun. 2013, 4, 2055. [Google Scholar] [CrossRef] [PubMed]
- Jensen, P.J.; Pastor, G.M. Low-energy properties of two-dimensional magnetic nanostructures: Interparticle interactions and disorder effects. New J. Phys. 2003, 5, 1–22. [Google Scholar] [CrossRef]
- Bonanni, A. Ferromagnetic nitride-based semiconductors doped with transition metals and rare-earths. Semicond. Sci. Technol. 2007, 22, R41. [Google Scholar] [CrossRef]
- Kane, M.H.; Gupta, D.; Ferguson, I.T. Transition Metal and Rare Earth Doping in GaN; Woodhead Publishing: Cambridge, UK, 2016; pp. 315–370. [Google Scholar]
- Zavada, J.M. Magnetic III-N Semiconductors Based on Rare Earth Doping. ECS Trans. 2019, 89, 17. [Google Scholar] [CrossRef]
- Santos, J.P.T.; Marques, M.; Teles, L.K.; Ferreira, L.G. Antiferromagnetism with spin polarization of GaN-based diluted magnetic semiconductors. Phys. Rev. B 2010, 81, 115209. [Google Scholar] [CrossRef]
- Gonzalez-Swacki, N.; Majewski, J.A.; Dietl, T. Aggregation and magnetism of Cr, Mn, and Fe cations in GaN. Phys. Rev. B 2011, 83, 184417. [Google Scholar] [CrossRef] [Green Version]
- Dhar, S.; Brandt, O.; Trampert, A.; Friedland, K.J.; Sun, Y.J.; Ploog, K.H. Observation of spin-glass behavior in homogeneous (Ga,Mn)N layers grown by reactive molecular-beam epitaxy. Phys. Rev. B 2003, 67, 165205. [Google Scholar] [CrossRef] [Green Version]
- Sonoda, S.; Shimizu, S.; Sasaki, T.; Yamamoto, Y.; Horia, H. Molecular beam epitaxy of wurtzite (Ga,Mn)N films on sapphire(0 0 0 1) showing the ferromagnetic behaviour at room temperature. J. Cryst. Growth 2002, 237–239, 1358. [Google Scholar] [CrossRef] [Green Version]
- Sawicki, M.; Devillers, T.; Gałeski, S.; Simserides, C.; Dobkowska, S.; Faina, B.; Grois, A.; Navarro-Quezada, A.; Trohidou, K.N.; Majewski, J.A.; et al. Origin of low-temperature magnetic ordering in Ga1−xMnxN. Phys. Rev. B 2012, 85, 205204. [Google Scholar] [CrossRef] [Green Version]
- Kunert, G.; Dobkowska, S.; Li, T.; Reuther, H.; Kruse, C.; Figge, S.; Jakieła, R.; Bonanni, A.; Grenzer, J.; Stefanowicz, W.; et al. Ga1−xMnxN epitaxial films with high magnetization. Appl. Phys. Lett. 2012, 101, 022413. [Google Scholar] [CrossRef] [Green Version]
- Stefanowicz, S.; Kunert, G.; Simserides, C.; Majewski, J.A.; Stefanowicz, W.; Krusse, C.; Figge, S.; Li, T.; Jakieła, R.; Trohidou, K.; et al. Phase diagram and critical behavior of the random ferromagnet Ga1−xMnxN. Phys. Rev. B 2013, 88, 081201(R). [Google Scholar] [CrossRef] [Green Version]
- Zaja̧c, M.; Doradziński, R.; Gosk, J.; Sczytko, J.; Lefeld-Sosnowska, M.; Kamińska, M.; Twardowski, A.; Palczweska, M.; Grzanka, E.; Gȩbicki, W. Magnetic and optical properties of GaMnN magnetic semiconductor. Appl. Phys. Lett. 2001, 78, 9. [Google Scholar] [CrossRef]
- Granville, S.; Ruck, B.J.; Budde, F.; Trodhal, H.J.; Williams, G.V.M. Nearest-neighbor Mn antiferromagnetic exchange in Ga1−xMnxN. Phys. Rev. B. 2010, 81, 184425. [Google Scholar] [CrossRef] [Green Version]
- Sedmidubský, D.; Leitner, J.; Soferr, Z. Phase relations in the Ga-Mn-N system. J. Alloys Compd. 2008, 452, 105–109. [Google Scholar] [CrossRef]
- Leineweber, A.; Niewa, R.; Jacobs, H.; Kockelmann, W. The manganese nitrides Mn3N2 and Mn6N5−x: Nuclear and magnetic structures. J. Mater. Chem. 2000, 10, 2827. [Google Scholar] [CrossRef]
- Zaja̧c, M.; Gosk, J.; Grzanka, E.; Kamińska, M.; Twardowski, A.; Strojek, B.; Szyszko, T.; Podsiadło, S. Possible origin of ferromagnetism in (Ga,Mn)N. J. Appl. Phys. 2003, 93, 4715–4717. [Google Scholar] [CrossRef]
- Suzuki, K.; Kaneko, T.; Yoshida, H.; Obi, Y.; Fujimori, H.; Morita, H. Crystal structure and magnetic properties of the compound MnN. J. Alloys Compd. 2000, 306, 66–71. [Google Scholar] [CrossRef]
- Li, C.; Yang, Y.; Lv, L.; Huang, H.; Wang, Z.; Yang, S. Fabrication and magnetic characteristic of ferrimagnetic bulk Mn4N. J. Alloys Compd. 2008, 457, 57–60. [Google Scholar] [CrossRef]
- Baik, J.M.; Kim, H.S.; Park, C.G.; Lee, J.L. Effect of microstructural evolution on magnetic property of Mn-implanted p-type GaN. Appl. Phys. Lett. 2003, 83, 13. [Google Scholar] [CrossRef] [Green Version]
- Niida, H.; Hori, T.; Nakagawa, Y. Magnetic Properties and Crystal Distortion of Hexagonal Mn3Ga. J. Phys. Soc. Jpn. 1983, 52, 1512–1514. [Google Scholar] [CrossRef]
- Balke, B.; Fecher, G.H.; Winterlik, J.; Felser, C. Mn3Ga, a compensated ferrimagnet with high Curie temperature and low magnetic moment for spin torque transfer applications. App. Phys. Lett. 2007, 90, 152504. [Google Scholar] [CrossRef]
- Eddine, M.N.; Bertaut, E. Structure cristallographic et magnetique de Mn2N0.86. Solid State Commun. 1977, 23, 147–150. [Google Scholar] [CrossRef]
- Sun, L.; Yan, F.; Gao, H.; Zhang, H.; Zeng, Y.; Wang, G.; Li, J. Structure and magnetic characteristics of nonpolar a-plane GaN:Mn films. J. Phys. D Appl. Phys. 2008, 41, 165004. [Google Scholar] [CrossRef]
- Sztenkiel, D.; Foltyn, M.; Mazur, G.; Adhikari, R.; Kosiel, K.; Gas, K.; Zgirski, M.; Kruszka, R.; Jakieła, R.; Li, T.; et al. Stretching magnetism with an electric field in a nitride semiconductor. Nat. Commun. 2016, 7, 13232. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Lee, K.J.; Kim, D.J.; Kim, H.J.; Ihm, Y.E.; Djayaprawira, D.; Takahashi, M.; Kim, C.S.; Kim, C.G.; Yoo, S.H. Magnetotransport of p-type GaMnN assisted by highly conductive precipitates. Appl. Phys. Lett. 2003, 82, 1775. [Google Scholar] [CrossRef]
- Kuroda, S.; Bellet-Amalric, E.; Giraud, R.; Marcet, S.; Cibert, J.; Mariette, H. Strong influence of Ga/N flux ratio on Mn incorporation into Ga1−xMnx epilayers grown by plasma-assisted molecular beam epitaxy. Appl. Phys. Lett. 2003, 83, 4580–4582. [Google Scholar] [CrossRef]
- Giraud, R.; Kuroda, S.; Marcet, S.; Bellet-Amalric, E.; Biquard, X.; Barbara, B.; Fruchart, D.; Ferrand, D.; Cibert, J.; Mariette, H. Ferromagnetic Ga1−xMnxN epilayers vs. antiferromagnetic GaMn3N clusters. Europhys. Lett. 2004, 65, 553–559. [Google Scholar] [CrossRef] [Green Version]
- Kocan, M.; Malindretos, J.; Roever, M.; Zenneck, J.; Niermann, T.; Mai, D.; Bertelli, M.; Seibt, M.; Rizzi, A. Mn incorporation in GaN thin layers grown by molecular-beam epitaxy. Semicond. Sci. Technol. 2006, 21, 1348–1353. [Google Scholar] [CrossRef]
- Miao, M.S.; Herwadkar, A.; Lambrecht, W.R.L. Electronic structure and magnetic properties of Mn3GaN precipitates in Ga1−xMnxN. Phys. Rev. B 2005, 72, 033204. [Google Scholar] [CrossRef]
- Song, B.; Jian, J.; Bao, H.; Lei, M.; Li, H.; Wang, G.; Xu, Y.; Chen, X. Observation of spin-glass behavior in antiperovskite Mn3GaN. Appl. Phys. Lett. 2008, 92, 192511. [Google Scholar] [CrossRef]
- Iye, Y.; Oiwa, A.; Ando, A.; Katsumoto, S.; Matsukura, F.; Shen, A.; Ohno, H.; Munekata, H. Metal–insulator transition and magnetotransport in III–V compound diluted magnetic semiconductors. Mater. Sci. Eng. B 1999, 63, 88. [Google Scholar] [CrossRef]
- Devillers, T.; Rovezzi, M.; Szwacki, N.G.; Dobkowska, S.; Stefanowicz, W.; Sztenkiel, D.; Grois, A.; Suffczynski, J.; Navarro-Quezada, A.; Faina, B.; et al. Manipulating Mn–Mgk cation complexes to control the charge- and spin-state of Mn in GaN. Sci. Rep. 2012, 2, 722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devillers, T.; Leite, D.M.G.; Da Silva, J.H.D.; Bonanni, A. Functional Mn–Mgk cation complexes in GaN featured by Raman spectroscopy. App. Phys. Lett. 2013, 103, 211909. [Google Scholar] [CrossRef] [Green Version]
- Kysylychyn, D.; Suffczynski, J.; Wozniak, T.; Szwacki, N.; Bonanni, A. Resonant excitation of infrared emission in GaN:(Mn,Mg). Phys. Rev. B 2018, 97, 245311. [Google Scholar] [CrossRef] [Green Version]
- Stefanowicz, W.; Sztenkiel, D.; Faina, B.; Grois, A.; Rovezzi, M.; Devillers, T.; Navarro-Quezada, A.; Li, T.; Jakieła, R.; Sawicki, M.; et al. Magnetism of dilute (Ga,Mn)N. Phys. Rev. B 2010, 81, 235210. [Google Scholar] [CrossRef] [Green Version]
- Capuzzo, G.; Kysylychyn, D.; Adhikari, R.; Li, T.; Faina, B.; Martín-Luengo, A.T.; Bonanni, A. All-nitride AlxGa1−xN:Mn/GaN distributed Bragg reflectors for the near-infrared. Sci. Rep. 2017, 7, 42697. [Google Scholar] [CrossRef] [Green Version]
- Ney, A.; Rajaram, R.; Arenholz, E.; Harris, J.S., Jr.; Samant, M.; Farrow, R.F.C.; Parkin, S.S.P. Structural and magnetic properties of Cr and Mn doped InN. J. Magn. Magn. Mater. 2006, 300, 7–11. [Google Scholar] [CrossRef]
- Heikmann, S.; Keller, S.; DenBaars, S.P.; Mishra, U.K. High temperature (>400 K) ferromagnetism in III-V-based diluted magnetic semiconductor GaCrN grown by ECR molecular-beam epitaxy. Appl. Phys. Lett. 2002, 81, 439. [Google Scholar]
- Bougrioua, Z.; Azize, M.; Jimenez, A.; Brania, A.F.; Lorenzini, P.; Beaumont, B.; Munioz, E.; Gibart, P. Fe doping for making resistive GaN layers with low dislocation density; consequence on HEMTs. Phys. Stat. Solidi C 2005, 2, 2424–2428. [Google Scholar] [CrossRef]
- Polyakov, A.Y.; Smirnov, N.B.; Govorkov, A.V.; Pearton, S.J. Electrical and optical properties of Fe-doped semi-insulating GaN templates. Appl. Phys. Lett. 2003, 83, 3314. [Google Scholar] [CrossRef]
- Ishiguro, T.; Yamada, A.; Kotani, J.; Nakamura, N.; Kikkawa, T.; Watanabe, K.; Imanishi, K. New Model of Fe Diffusion in Highly Resistive Fe-Doped Buffer Layer for GaN High-Electron-Mobility Transistor. Jpn. J. App. Phys. 2013, 52, 08JB17. [Google Scholar] [CrossRef]
- Heikmann, S.; Keller, S.; Mates, T.; DenBaars, S.P.; Mishra, U.K. Growth and characteristics of Fe doped GaN. J. Cryst. Growth 2003, 248, 513–517. [Google Scholar] [CrossRef]
- Therodoropoulou, N.; Hebard, A.F.; Chu, S.N.G.; Overgberg, M.E.; Abernathy, C.R.; Pearton, S.J.; Wilson, R.G.; Zavada, J.M. Characterization of high dose Fe implantation into p-GaN. Appl. Phys. Lett. 2001, 79, 3452–3453. [Google Scholar] [CrossRef] [Green Version]
- Schon, Y.; Kwon, Y.H.; Park, Y.S.; Yuldashev, S.U.; Lee, S.J.; Park, C.S.; Chung, J.; Yoon, S.J.; Kim, H.J.; Lee, W.C.; et al. The study of structural, optical, and magnetic properties of undoped and p-type GaN implanted with Mn+ (10 at.%). J. Appl. Phys. 2004, 95, 761–763. [Google Scholar]
- Talut, G.; Reuther, H.; Mücklich, A.; Eichhorn, F.; Potzger, K. Nanocluster formation in Fe implanted GaN. Appl. Phys. Lett. 2006, 89, 161909. [Google Scholar] [CrossRef]
- Talut, G.; Grenzer, J.; Reuther, H.; Shalimov, A.; Baehtz, C.; Novikov, D.; Walz, B. In situ observation of secondary phase formation in Fe implanted GaN annealed in low pressure N2 atmosphere. Appl. Phys. Lett. 2009, 95, 232506. [Google Scholar] [CrossRef] [Green Version]
- Talut, G.; Reuther, H.; Grenzer, J.; Mücklich, A.; Shalimov, A.; Skorupa, W.; Stromberg, F. Spinodal decomposition and secondary phase formation in Fe-oversaturated GaN. Phys. Rev. B 2010, 81, 155212. [Google Scholar] [CrossRef]
- Sato, K.; Katayama-Yoshida, H.; Dederichs, P.H. High Curie temperature and nano-scale spinodal decomposition phase in diluted magnetic semiconductors. Jpn. J. Appl. Phys. 2005, 44, L948–L951. [Google Scholar] [CrossRef]
- Bonanni, A.; Kiecana, M.; Simbrunner, C.; Li, T.; Sawicki, M.; Wegscheider, M.; Quast, M.; Przybylinska, H.; Navarro-Quezada, A.; Jakieła, R.; et al. Paramagnetic GaN:Fe and ferromagnetic (Ga,Fe)N: The relationship between structural, electronic, and magnetic properties. Phys. Rev. B 2007, 75, 125210. [Google Scholar] [CrossRef] [Green Version]
- Pacuski, W.; Kossacki, P.; Ferrand, D.; Golnik, A.; Cibert, J.; Wegscheider, M.; Navarro-Quezada, A.; Bonanni, A.; Kiecana, M.; Sawicki, M.; et al. Observation of Strong-Coupling Effects in a Diluted Magnetic Semiconductor Ga1−xFexN. Phys. Rev. Lett. 2008, 100, 037204. [Google Scholar] [CrossRef] [Green Version]
- Bonanni, A.; Navarro-Quezada, A.; Li, T.; Wegscheider, M.; Matěj, Z.; Holý, V.; Lechner, R.T.; Bauer, G.; Rovezzi, M.; D’Acapito, F.; et al. Controlled Aggregation of Magnetic Ions in a Semiconductor: An Experimental Demonstration. Phys. Rev. Lett. 2008, 101, 135502. [Google Scholar] [CrossRef] [PubMed]
- Rovezzi, M.; D’Acapito, F.; Navarro-Quezada, A.; Faina, B.; Li, T.; Bonanni, A.; Filippone, F.; Bonapasta, A.; Dietl, T. Local structure of (Ga,Fe)N and (Ga,Fe)N:Si investigated by x-ray absorption fine structure spectroscopy. Phys. Rev. B 2009, 79, 195209. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Quezada, A.; GonzalezSzwacki, N.; Stefanowicz, W.; Li, T.; Grois, A.; Devillers, T.; Rovezzi, M.; Jakieła, R.; Faina, B.; Majewski, J.A.; et al. Fe-Mg interplay and the effect of deposition mode in (Ga,Fe)N doped with Mg. Phys. Rev. B 2011, 84, 155321. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Quezada, A.; Stefanowicz, W.; Li, T.; Faina, B.; Rovezzi, M.; Lechner, R.T.; Devillers, T.; D’Acapito, F.; Bauer, G.; Sawicki, M.; et al. Embedded magnetic phases in (Ga,Fe)N: Key role of growth temperature. Phys. Rev. B 2010, 81, 205206. [Google Scholar] [CrossRef] [Green Version]
- Kovács, A.; Schaffer, B.; Moreno, M.S.; Jinschek, J.R.; Craven, A.J.; Dietl, T.; Bonanni, A.; Dunin-Borkowski, R.E. Characterization of Fe-N nanocrystals and nitrogen–containing inclusions in (Ga,Fe)N thin films using transmission electron microscopy. J. Appl. Phys. 2013, 114, 033530. [Google Scholar] [CrossRef] [Green Version]
- Gas, K.; Sawicki, M. In situ compensation method for high-precision and high-resistivity integral magnetometry. Meas. Sci. Technol. 2019, 30, 8. [Google Scholar] [CrossRef] [Green Version]
- Kowalik, I.A.; Persson, A.; Niño, M.Á.; Navarro-Quezada, A.; Faina, B.; Bonanni, A.; Dietl, T.; Arvanitis, D. Element-specific characterization of heterogeneous magnetism in (Ga,Fe)N films. Phys. Rev. B 2012, 85, 184411. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Quezada, A.; Devillers, T.; Li, T.; Bonanni, A. Planar arrays of embedded nanocrystals in GaN. Appl. Phys. Lett. 2012, 101, 081911. [Google Scholar] [CrossRef] [Green Version]
- Grois, A.; Devillers, T.; Li, T.; Bonanni, A. Planar array of self-assembled GaxFe4-xN nanocrystals in GaN: Magnetic anisotropy determined via ferromagnetic resonance. Nanotechnology 2014, 25, 395704. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Quezada, A.; Devillers, T.; Li, T.; Bonanni, A. Tuning the Size, Shape and Density of γ’-GayFe4−yN Nanocrystals Embedded in GaN. Crystals 2019, 9, 50. [Google Scholar] [CrossRef] [Green Version]
- Houeben, A.; Burghaus, J.; Dronskowski, R. The Ternary Nitrides GaFe3N and AlFe3N: Improved Synthesis and Magnetic Properties. Chem. Mater. 2009, 21, 4332–4338. [Google Scholar] [CrossRef]
- Burghaus, J.; Sougrati, M.; Moechel, A.; Houben, A.; Hermann, R.P.; Dronskowski, R. Local ordering and magnetism in Ga0.9Fe3.1N. J. Solid State Chem. 2011, 184, 2315. [Google Scholar] [CrossRef]
- Jungwirth, T.; Martí, X.; Wadley, P.; Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 2016, 11, 231. [Google Scholar] [CrossRef] [PubMed]
- Wadley, P.; Howells, B.; Zelezný, J.; Andrews, C.; Hills, V.; Campion, R.; Novák, V.; Olejník, K.; Maccherozzi, F.; Dhesi, S.; et al. Electrical switching of an antiferromagnet. Science 2016, 351, 587. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Quezada, A.; Aiglinger, M.; Faina, B.; Gas, K.; Matzer, M.; Li, T.; Adhikari, R.; Sawicki, M.; Bonanni, A. Magnetotransport in phase-separated (Ga,Fe)N with γ’-GayFe4−yN nanocrystals. Phys. Rev. B 2019, 99, 085201. [Google Scholar] [CrossRef] [Green Version]
- Nikolaev, K.; Krivorotov, I.; Dahlberg, E.; Vas’ko, V.; Urazdhin, S.; Loloee, R.; Pratt, W. Structural and magnetic properties of triode-sputtering Fe4N epitaxial films on SrTiO3(001) substrates. Appl. Phys. Lett. 2003, 82, 98. [Google Scholar] [CrossRef]
- Li, T.; Simbrunner, C.; Navarro-Quezada, A.; Wegscheider, M.; Quast, M.; Litvinov, D.; Gerthsen, D.; Bonanni, A. Phase-dependent distribution of Fe-rich nanocrystals in MOVPE-grown (Ga,Fe)N. J. Cryst. Growth 2008, 310, 3294–3298. [Google Scholar] [CrossRef]
- Navarro-Quezada, A.; Truglas, T.; Bauernfeind, V.; Ginzinger, W.; Matzer, M.; Ney, A.; Groiss, H.; Bonanni, A. Perpendicular magnetic anisotropy in GaδFeN/AlxGa1−xN heterostructures. arXiv 2020, arXiv:2001.07375. [Google Scholar]
- Shi, Z.; Cooke, J.; Zhang, Z.; Klein, B. Structural, magnetic, and electronic properties of Fe/Au monatomic multilayers. Phys. Rev. B. 1996, 54, 3030. [Google Scholar] [CrossRef] [Green Version]
- Eck, B.; Dronskowski, R.; Takahashi, M.; Kikkawa, S. Theoretical calculations on the structures, electronic and magnetic properties of binary 3d transition metal nitrides. J. Mat. Chem. 1999, 9, 1527–1537. [Google Scholar] [CrossRef]
- Hinomura, T.; Nasu, S. 57Fe Mössbauer study of Fe nitrides. Nouvo Cimento D 1996, 18, 253–257. [Google Scholar] [CrossRef]
- Leineweber, A.; Jacobs, H.; Hüning, F.; Lueken, H.; Schilder, H.; Kockelmann, W. ϵ-Fe3N: Magnetic structure, magnetization and temperature dependent disorder of nitrogen. J. Alloys Compd. 1999, 288, 79–87. [Google Scholar] [CrossRef]
- Jack, K.H. The Iron-Nitrogen System: The Crystal Structures of ε-Phase Iron Nitrides. Acta Cryst. 1952, 5, 404. [Google Scholar] [CrossRef]
- Yang, S.G.; Pakhomov, A.B.; Hung, S.T.; Wong, C.Y. Room-temperature magnetism in Cr-doped AlN semiconductor films. Appl. Phys. Lett. 2002, 81, 2418–2420. [Google Scholar] [CrossRef]
- Frazier, R.M.; Thaler, G.T.; Leifer, J.Y.; Hite, J.K.; Gila, B.P.; Abernathy, C.R.; Pearton, S.J. Role of growth conditions on magnetic properties of AlCrN grown by molecular beam epitaxy. Appl. Phys. Lett. 2005, 86, 052101. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.Z.; Xu, B.; Sellmyer, D.J. Influence of nitrogen growth pressure on the ferromagnetic properties of Cr-doped AlN thin films. Appl. Phys. Lett. 2005, 86, 212504. [Google Scholar] [CrossRef]
- Gu, L.; Wu, S.Y.; Liu, H.X.; Singh, R.K.; Newmann, N.; Smith, D.J. Characterization of Al(Cr)N and Ga(Cr)N dilute magnetic semiconductors. J. Magn. Magn. Mater. 2005, 290–291, 1395–1397. [Google Scholar] [CrossRef]
- Hashimoto, M.; Zhou, Y.K.; Kanamura, M.; Asahi, H. Growth of Fe doped semi-insulating GaN by metal organic vapor deposition. Solid State Comm. 2002, 122, 37–39. [Google Scholar] [CrossRef]
- Cho, Y.S.; Hardtdegen, H.; Kaluza, N.; Von der Ahe, M.; Breuer, U.; Bochem, H.-P.; Ruterana, P.; Schmalbuch, K.; Wenzel, D.; Schäpers, T.; et al. Influence of growth temperature on GaN:Cr incorporation and structural properties in MOVPE. J. Cryst. Growth 2009, 312, 1–9. [Google Scholar] [CrossRef]
- Cui, X.Y.; Medvedeva, J.E.; Delley, B.; Freeman, A.J.; Newmann, N.; Stampfl, C. Role of Embedded Clustering in Dilute Magnetic Semiconductors: Cr doped GaN. Phys. Rev. Lett. 2005, 95, 256404. [Google Scholar] [CrossRef] [Green Version]
- Katayama-Yoshida, H.; Sato, K.; Fukushima, T.; Toyoda, M.; Kizaki, H.; Dinh, V.A.; Dederichs, P.H. Computational nano-materials design for high-TC ferromagnetism in wide-gap magnetic semiconductors. J. Magn. Magn. Mater. 2007, 310, 2070–2077. [Google Scholar] [CrossRef]
- Zhou, Y.K.; Kimura, S.; Emura, S.; Hasegawa, S.; Asahi, H. Formation of aligned CrN nanoclusters in Cr-delta-doped GaN. J. Phys. Condens. Matter 2009, 21, 064216. [Google Scholar] [CrossRef] [PubMed]
- Polyakov, A.Y.; Smirnov, N.B.; Govorkov, A.V.; Frazier, R.M.; Liefer, J.Y.; Thaler, G.T.; Abernathy, C.R.; Pearton, S.J.; Zavada, J.M. Optical and electrical properties of AlCrN films grown by molecular beam epitaxy. J. Vac. Sci. Technol. B 2004, 22, 2758–2762. [Google Scholar] [CrossRef]
- Wu, S.Y.; Liu, H.X.; Gu, L.; Singh, R.K.; Budd, L.; Van Schilfgaarde, M.; McCartney, M.R.; Smith, D.J.; Newmann, N. Synthesis, characterization and modeling of high quality ferromagnetic Cr-doped AlN thin films. Appl. Phys. Lett. 2003, 82, 3041–3049. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Steckl, A.J. Three-color integration on rare-earth-doped GaN electroluminescent thin films. Appl. Phys. Lett. 2003, 82, 502. [Google Scholar] [CrossRef]
- Liu, H.X.; Wu, S.Y.; Singh, R.K.; Gu, L.; Smith, D.J.; Newmann, N.; Dilley, N.R.; Montes, L.; Simmonds, M.B. Observation of ferromagnetism above 900 K in Cr-GaN and Cr-AlN. Appl. Phys. Lett. 2004, 85, 4076–4078. [Google Scholar] [CrossRef]
- Herle, P.S.; Hedge, M.S.; Vasathacharya, N.Y.; Philip, S. Synthesis of TiN, VN, and CrN from Ammonolysis of TiS2, VS2, and Cr2S3. J. Sol. State Chem. 1997, 134, 120. [Google Scholar] [CrossRef]
- Song, G.S.; Kobayashi, M.; Hwang, J.I.; Kataoka, T.; Takizawa, M.; Fujimori, A.; Ohkouchi, T.; Takeda, Y.; Okane, T.; Saitoh, Y.; et al. Electronic structure of Ga1−xCrxN and Si-doping effects studied by photoemission and x-ray absorption spectroscopy. Phys. Rev. B 2008, 78, 033304. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Sun, Q.; Rao, B.K.; Jena, P.; Kawazoe, Y. Nitrogen-induced magnetic transition in small chromium clusters. J. Chem. Phys. 2003, 119, 7124–7130. [Google Scholar] [CrossRef] [Green Version]
- Corliss, L.M.; Elliott, N.; Hastings, J.M. Antiferromagnetic Structure of CrN. Phys. Rev. 1960, 117, 929. [Google Scholar] [CrossRef]
- Jahnatek, M.; Krajci, M.; Hafner, J. Interatomic bonds and the tensile anisotropy of trialumindes in the elastic limit: A density functional study for Al3(Sc,Ti,V,Cr). Philos. Mag. 2007, 87, 1769–1794. [Google Scholar] [CrossRef] [Green Version]
- Teraguchi, N.; Suzuki, A.; Nanishi, Y.; Zhou, Y.K.; Hashimoto, M.; Asahi, H. Room-temperature observation of ferromagnetism in diluted magnetic semiconductor GaGdN grown by RF-molecular beam epitaxy. Sol. State Commun. 2002, 122, 651–653. [Google Scholar] [CrossRef]
- Dhar, S.; Brandt, O.; Ramsteiner, M.; Sapega, V.F.; Ploog, K.H. Colossal Magnetic Moment of Gd in GaN. Phys. Rev. Lett. 2005, 94, 037205. [Google Scholar] [CrossRef] [PubMed]
- Dhar, S.; Kammermeier, T.; Ney, A.; Pérez, L.; Ploog, K.H.; Melkinov, A.; Wieck, A.D. Ferromagnetism and colossal magnetic moment in Gd-focused ion-beam-implanted GaN. Appl. Phys. Lett. 2006, 89, 062503. [Google Scholar] [CrossRef]
- Hejtmánek, J.; Knížek, K.; Maryško, M.; Jirák, Z.; Sebmidubský, D.; Sofer, Z.; Peřina, V.; Hardtdegen, H.; Buchal, C. On the magnetic properties of Gd implanted GaN. J. Appl. Phys 2008, 103, 07D107. [Google Scholar] [CrossRef] [Green Version]
- Roever, M.; Mai, D.D.; Bedoya-Pinto, A.; Malindretos, J.; Rizzi, A. Electron stabilized ferromagnetism in GaGdN. Phys. Stat. Solidi C 2008, 5, 2352–2354. [Google Scholar] [CrossRef]
- Ney, A.; Kammermeier, T.; Manueal, E.; Ney, V.; Dhar, S.; Ploog, K.H.; Wilhelm, F.; Rogalev, A. Element specific investigations of the structural and magnetic properties of Gd:GaN. Appl. Phys. Lett. 2007, 90, 252515. [Google Scholar] [CrossRef] [Green Version]
- Junod, P.; Menth, A.; Vogt, O. Revue des propriétés magnétiques et électroniques des composés des terres rares avec les anions de 5ieme groupe du systéme périodique. Phys. Kondens. Mater. 1969, 8, 323–370. [Google Scholar] [CrossRef]
- Dhar, S.; Pérez, L.; Brandt, O.; Trampert, A.; Ploog, K.H.; Keller, J.; Beschoten, B. Gd-doped GaN: A very dilute ferromagnetic semiconductor with a Curie temperature above 300 K. Phys. Rev. B 2005, 72, 245203. [Google Scholar] [CrossRef] [Green Version]
- Shvarkov, S.; Ludwig, A.; Wieck, A.D.; Cordier, Y.; Ney, A.; Hardtdegen, H.; Haab, A.; Trampert, A.; Ranchal, R.; Herfort, J.; et al. Magnetic properties of Gd-doped GaN. Phys. Status Solidi B 2014, 9, 1673–1684. [Google Scholar] [CrossRef]
- Khaderbad, M.A.; Dhar, S.; Pérez, L.; Ploog, K.H.; Melnikov, A.; Wieck, A.D. Effect of annealing on the magnetic properties of Gd focused ion beam implanted GaN. Appl. Phys. Lett. 2007, 91, 072514. [Google Scholar] [CrossRef] [Green Version]
- Mitra, C.; Lambrecht, W.R.L. Interstitial-nitrogen- and oxygen-induced magnetism in Gd-doped GaN. Phys. Rev. B 2009, 80, 081202. [Google Scholar] [CrossRef]
- Roever, M.; Malindretos, J.; Bedoya-Pinto, A.; Rizzi, A.; Rauch, C.; Tuomisto, F. Tracking defect-induced ferromagnetism in GaN:Gd. Phys. Rev. B 2011, 84, 081201(R). [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Yu, P.Y.; Ma, Z.; Mao, S.S. Ferromagnetism in GaN:Gd: A Density Functional Theory Study. Phys. Rev. Lett. 2008, 100, 127203. [Google Scholar] [CrossRef] [Green Version]
- Thiess, A.; Dederichs, P.H.; Zeller, R.; Blügel, S.; Lambrecht, W.R.L. Superparamagnetism in Gd-doped GaN induced by Ga-vacancy clustering. Phys. Rev. B 2012, 86, 180401(R). [Google Scholar] [CrossRef] [Green Version]
- Hite, J.K.; Frazier, R.M.; Davies, R.P.; Thaler, G.T.; Abernathy, C.R.; Pearton, S.J.; Zavada, J.M.; Brown, E.; Hömmerich, U. Effects of Si co-doping on ferromagnetic properties of GaGdN. J. Electron. Mater. 2007, 36, 391–396. [Google Scholar] [CrossRef]
- Gupta, S.; Zaidi, T.; Melton, A.; Malguth, E.; Yu, H.; Liu, Z.; Liu, X.; Schwartz, J.; Ferguson, I.T. Electrical and magnetic properties of Ga1−xGdxN grown by metal organic chemical vapor deposition. J. Appl. Phys. 2011, 110, 083920. [Google Scholar] [CrossRef]
- Martinez-Criado, G.; Sancho-Juan, O.; Garro, N.; Sans, J.A.; Cantarero, A.; Susini, J.; Roever, M.; Mai, D.D.; Bedoya-Pinto, A.; Malindretos, J.; et al. X-ray absorption in GaGdN: A study of local structure. Appl. Phys. Lett. 2008, 93, 021916. [Google Scholar] [CrossRef]
- Han, S.Y.; Hite, J.; Thaler, G.T.; Frazier, R.M.; Abernathy, C.R.; Pearton, S.J.; Choi, H.K.; Lee, W.O.; Park, Y.D.; Zavada, J.M.; et al. Effect of Gd implantation on the structural and magnetic properties of GaN and AlN. Appl. Phys. Lett. 2006, 88, 042102. [Google Scholar] [CrossRef] [Green Version]
- Ney, A.; Kammermeier, T.; Ollefs, K.; Ney, V.; Yea, S.; Dhar, S.; Ploog, K.H.; Röver, M.; Malindretos, J.; Rizzi, A.; et al. Gd-doped GaN studied with element specificity: Very small polarization of Ga, paramagnetism of Gd and the formation of magnetic clusters. J. Magn. Magn. Mat. 2010, 90, 252515. [Google Scholar] [CrossRef]
- Natali, F.; Ruck, B.J.; Plank, N.O.V.; Trodahl, H.J.; Granville, S.; Meyer, C.; Lambrecht, W.R. Rare-earth mononitrides. Prog. Mat. Sci. 2013, 58, 1316–1360. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Trampert, A. Coherent GdN clusters in epitaxial GaN:Gd thin films determined by transmission electron microscopy. Nanotechnology 2013, 24, 255701. [Google Scholar] [CrossRef] [PubMed]
- Kent, T.F.; Yang, J.; Yang, L.; Mills, M.J.; Myers, R.C. Epitaxial ferromagnetic nanoislands of cubic GdN in hexagonal GaN. Appl. Phys. Lett. 2012, 100, 152111. [Google Scholar] [CrossRef] [Green Version]
- Krishnamoorthy, S.; Kent, T.F.; Yang, J.; Park, P.S.; Myers, R.C.; Rajan, S. GdN Nanoisland-Based GaN Tunnel Junctions. Nano Lett. 2013, 13, 2570–2575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietl, T.; Bonanni, A.; Ohno, H. Families of magnetic semiconductors—An overview. J. Semicond. 2019, 40, 080301. [Google Scholar] [CrossRef] [Green Version]
- Jena, D.; Page, R.; Casamento, J.; Dang, P.; Singhal, J.; Zhang, Z.; Wright, J.; Kalsa, G.; Cho, Y.; Xing, H.G. The new nitrides: Layered, ferroelectric, magnetic, metallic and superconducting nitrides to boost the GaN photonics and electronics eco-system. Jpn. J. Appl. Phys. 2019, 58, SC0801. [Google Scholar] [CrossRef]
Phase | Structural Properties | Magnetic Properties | Growth Method |
---|---|---|---|
-MnN | fct | Antiferromagnetic, K [30] | Ammonothermal [25] |
nm, nm [30] | |||
-MnN | fct | Antiferromagnetic, = 925 K [28] | Ammonothermal [25], |
nm, nm [28] | implantation [32] | ||
- MnN | perovskite | Ferrimagnetic, = 738 K [31] | Ammonothermal [25] |
-MnGa | wz | Weak ferromagnetic, = 460 K [33] | Implantation [32] |
nm, nm [33] | |||
GaMnN | Antiperovskite | Ferromagnetic [42] | PA-MBE [38,40] |
nm [39] |
Phase | Structural Properties | Magnetic Properties | Growth Method |
---|---|---|---|
-Fe | bcc | Ferromagnetic, K [82] | Implantation [58], |
nm [83] | MOVPE (h) [67] | ||
-FeN | ortho, nm, | Antiferromagnetic, = 9 K [84] | MOVPE(h) [67] |
nm nm [83] | |||
- FeN | wz | Ferromagnetic, = 575 K [85] | Implantation [58,60], |
nm, nm [83] | MOVPE(h, ) [67,81] | ||
’-FeN | fcc | Ferromagnetic, = 750 K [86] | MOVPE(h,) [67,71] |
’-GaFeN | nm [74] | Weak antiferromagnetic, = 20 K [74] |
Phase | Structural Properties | Magnetic Properties | Growth Method |
---|---|---|---|
CrN | rock salt | Antiferromagnetic, K [82] | MBE [90], |
nm [103] | RF-MBE [95] | ||
CrN | trigonal | Ferromagnetic, = 380 K | MBE [90] |
nm, nm [83] | |||
AlCr | - | - | Implantation [58], |
MOVPE | |||
AlCr | fcc | Ferro/antiferromagnetic | MBE [90] |
nm [104] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro-Quezada, A. Magnetic Nanostructures Embedded in III-Nitrides: Assembly and Performance. Crystals 2020, 10, 359. https://doi.org/10.3390/cryst10050359
Navarro-Quezada A. Magnetic Nanostructures Embedded in III-Nitrides: Assembly and Performance. Crystals. 2020; 10(5):359. https://doi.org/10.3390/cryst10050359
Chicago/Turabian StyleNavarro-Quezada, Andrea. 2020. "Magnetic Nanostructures Embedded in III-Nitrides: Assembly and Performance" Crystals 10, no. 5: 359. https://doi.org/10.3390/cryst10050359
APA StyleNavarro-Quezada, A. (2020). Magnetic Nanostructures Embedded in III-Nitrides: Assembly and Performance. Crystals, 10(5), 359. https://doi.org/10.3390/cryst10050359