Synthesis of a Metal Oxide by Forming Solvate Eutectic Mixtures and Study of Their Synthetic Performance under Hyper- and Hypo-Eutectic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Generation of Metal-Containing Deep Eutectic Solvents
2.3. Generation of Aqueous Precursors
2.4. Heating Protocols
2.5. Characterization
3. Results and Discussion
3.1. Eutectic Mixtures
3.1.1. Ammonium Nitrate
3.1.2. Ammonium Carbonate, Ammonium Bicarbonate, Ammonium Acetate, and Ammonium Formate
3.2. Synthesis of YBCO Superconductor
3.3. Temperature Analysis
3.3.1. Via Rietveld Refinement of 5:1 Ammonium Nitrate/YBaCu Nitrates
3.3.2. Via Rietveld Refinement of 5:1 Tetramethylammonium Nitrate/YBaCu Nitrates
3.4. Thermogravimetry Analysis (TGA)
4. Structural Characterization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nunes, D.; Pimentel, A.; Santos, L.; Barquinha, P.; Pereira, L.; Fortunato, E.; Martins, R. Metal Oxide Nanostructures: Synthesis, Properties and Applications; Elsevier: Cambridge, MA, USA, 2018. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Shi, L.; Gao, M. Surfactant-free Synthesis of CuO with Controllable Morphologies and Enhanced Photocatalytic Property. Nanoscale Res. Lett. 2016, 11, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Wang, X.; Zhang, L.; Zou, X.; Ding, W.; Lu, X. Synthesis of mesoporous Ni–La2O3/SiO2 by ploy(ethylene glycol)-assisted sol-gel route as highly efficient catalysts for dry reforming of methane with a H2/CO ratio of unity. Catal. Commun. 2017, 94, 38–41. [Google Scholar] [CrossRef]
- Qu, S.; Yu, Y.; Lin, K.; Liu, P.; Zheng, C.; Wang, L.; Xu, T.; Wang, Z.; Wu, H. Easy hydrothermal synthesis of multi-shelled La2O3 hollow spheres for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 2018, 29, 1232–1237. [Google Scholar] [CrossRef]
- Huang, X.; Xu, C.; Ma, J.; Chen, F. Ionothermal synthesis of Cu-doped Fe3O4 magnetic nanoparticles with enhanced peroxidase-like activity for organic wastewater treatment. Adv. Powder Technol. 2018, 29, 796–803. [Google Scholar] [CrossRef]
- Danks, A.E.; Hall, S.R.; Schnepp, Z. The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater. Horiz. 2016, 3, 91–112. [Google Scholar] [CrossRef] [Green Version]
- Schütz, M.B.; Xiao, L.; Lehnen, T.; Fischer, T.; Mathur, S. Microwave-assisted synthesis of nanocrystalline binary and ternary metal oxides. Int. Mater. Rev. 2018, 63, 341–374. [Google Scholar] [CrossRef]
- Sun, Q.; Gu, Q.; Zhu, K.; Jin, R.; Liu, J.; Wang, J.; Qiu, J. Crystalline Structure, Defect Chemistry and Room Temperature Colossal Permittivity of Nd-doped Barium Titanate. Sci. Rep. 2017, 7, 42274. [Google Scholar] [CrossRef] [Green Version]
- Gu, Q.; Zhu, K.; Zhang, N.; Sun, Q.; Liu, P.; Liu, J.; Wang, J.; Li, Z. Modified Solvothermal Strategy for Straightforward Synthesis of Cubic NaNbO3 Nanowires with Enhanced Photocatalytic H2 Evolution. J. Phys. Chem. C 2015, 119, 25956–25964. [Google Scholar] [CrossRef]
- Gómez Rojas, O.; Song, G.; Hall, S.R. Fast and scalable synthesis of strontium niobates with controlled stoichiometry. CrystEngComm 2017, 19, 5351–5355. [Google Scholar] [CrossRef] [Green Version]
- Rojas, O.G.; Hall, S.R. On the synergistic interaction of an ionic liquid and biopolymers in the synthesis of strontium niobate. Mater. Chem. Phys. 2017, 202, 220–224. [Google Scholar] [CrossRef]
- Gómez Rojas, O.; Sudoh, I.; Nakayama, T.; Hall, S.R. The role of ionic liquids in the synthesis of the high-temperature superconductor YBa2Cu3O7−δ. CrystEngComm 2018, 20, 5814–5821. [Google Scholar] [CrossRef] [Green Version]
- Green, D.C.; Glatzel, S.; Collins, A.M.; Patil, A.J.; Hall, S.R. A New General Synthetic Strategy for Phase-Pure Complex Functional Materials. Adv. Mater. 2012, 24, 5767–5772. [Google Scholar] [CrossRef] [PubMed]
- Vioux, A.; Viau, L.; Volland, S.; Le Bideau, J. Use of ionic liquids in sol-gel; ionogels and applications. C. R. Chim. 2010, 13, 242–255. [Google Scholar] [CrossRef]
- Ding, J.; Zhou, D.; Spinks, G.; Wallace, G.; Forsyth, S.; Forsyth, M.; MacFarlane, D. Use of Ionic Liquids as Electrolytes in Electromechanical Actuator Systems Based on Inherently Conducting Polymers. Chem. Mater. 2003, 15, 2392–2398. [Google Scholar] [CrossRef]
- Šebesta, R.; Kmentová, I.; Toma, Š. Catalysts with ionic tag and their use in ionic liquids. Green Chem. 2018, 10, 484–496. [Google Scholar] [CrossRef]
- Zhao, H.; Xia, S.; Ma, P. Use of ionic liquids as ‘green’ solvents for extractions. J. Chem. Technol. Biotechnol. 2005, 80, 1089–1096. [Google Scholar] [CrossRef]
- Boston, R.; Foeller, P.Y.; Sinclair, D.C.; Reaney, I.M. Synthesis of Barium Titanate Using Deep Eutectic Solvents. Inorg. Chem. 2017, 56, 542–547. [Google Scholar] [CrossRef]
- Rojas, O.G.; Nakayama, T.; Hall, S.R. Green and cost-effective synthesis of the superconductor BSCCO (Bi-2212), using a natural deep eutectic solvent. Ceram. Int. 2019, 45, 8546–8552. [Google Scholar] [CrossRef] [Green Version]
- Eyckens, D.J.; Henderson, L.C. A review of solvate ionic liquids: Physical parameters and synthetic applications. Front. Chem. 2019, 7, 263. [Google Scholar] [CrossRef] [PubMed]
- Doebelin, N.; Kleeberg, R. Profex: A graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr. 2015, 48, 1573–1580. [Google Scholar] [CrossRef] [Green Version]
- Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017, 18, 529. [Google Scholar] [CrossRef] [PubMed]
- John Kotz, J.T.; Treichel, P. Chemistry and Chemical Reactivity; Cengage Learning: Boston, MA, USA, 2008; p. 140. ISBN 9781133420071. [Google Scholar]
- Eastaugh, N.; Walsh, V.; Chaplin, T.; Siddall, R.; Walsh, V.; Chaplin, T.; Siddall, R. Pigment Compendium; Routledge: London, UK, 2014. [Google Scholar] [CrossRef]
- Green, D.C.; Boston, R.; Glatzel, S.; Lees, M.R.; Wimbush, S.C.; Potticary, J.; Ogasawara, W.; Hall, S.R. On the Mechanism of Cuprate Crystal Growth: The Role of Mixed Metal Carbonates. Adv. Funct. Mater. 2015, 25, 4700–4707. [Google Scholar] [CrossRef] [Green Version]
- UN Industrial Development Organization. Fertilizer Manual. In International Fertilizer Development Center Ifdc; Fertil, M., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998; pp. 1–45. [Google Scholar]
- Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.; Elsevier: London, UK, 1997. [Google Scholar] [CrossRef]
- Balcon, S.; Potvin, C.; Salin, L.; Tempère, J.F.; Djéga-Mariadassou, G. Influence of CO2 on storage and release of NOx on barium-containing catalyst. Catal. Lett. 1999, 60, 39–43. [Google Scholar] [CrossRef]
- Amberntsson, A.; Persson, H.; Engstrom, P.; Kasemo, B. Nox release from a noble metal/BaO catalyst: Dependence on gas composition. Appl. Catal. B Environ. 2001, 31, 27–38. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez Rojas, O.; R. Hall, S.; Nakayama, T. Synthesis of a Metal Oxide by Forming Solvate Eutectic Mixtures and Study of Their Synthetic Performance under Hyper- and Hypo-Eutectic Conditions. Crystals 2020, 10, 414. https://doi.org/10.3390/cryst10050414
Gómez Rojas O, R. Hall S, Nakayama T. Synthesis of a Metal Oxide by Forming Solvate Eutectic Mixtures and Study of Their Synthetic Performance under Hyper- and Hypo-Eutectic Conditions. Crystals. 2020; 10(5):414. https://doi.org/10.3390/cryst10050414
Chicago/Turabian StyleGómez Rojas, Omar, Simon R. Hall, and Tadachika Nakayama. 2020. "Synthesis of a Metal Oxide by Forming Solvate Eutectic Mixtures and Study of Their Synthetic Performance under Hyper- and Hypo-Eutectic Conditions" Crystals 10, no. 5: 414. https://doi.org/10.3390/cryst10050414
APA StyleGómez Rojas, O., R. Hall, S., & Nakayama, T. (2020). Synthesis of a Metal Oxide by Forming Solvate Eutectic Mixtures and Study of Their Synthetic Performance under Hyper- and Hypo-Eutectic Conditions. Crystals, 10(5), 414. https://doi.org/10.3390/cryst10050414