The Influence of Annealing Temperature on the Structural and Optical Properties of ZrO2 Thin Films and How Affects the Hydrophilicity
Abstract
1. Introduction
2. Experimental Details
2.1. Preparation of Films
2.2. Characterization of Films
3. Results and Discussion
3.1. X-ray Diffraction
3.2. FT-IR Spectroscopy
3.3. UV-Vis
3.4. Photoluminescence Spectroscopy
3.5. Scanning Electron Microscope
3.6. Atomic Force Microscopy
3.7. Measurement of the Contact Angles
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kauddori, A.; Mazzochia, C.; Tempesti, E.; Anouchinsky, R. On the activity of ZrO2 prepared by different methods. J. Therm. Anal. 1998, 53, 97–109. [Google Scholar] [CrossRef]
- Gannavarapu, K.P.; Ganesh, V.; Thakkar, M.; Mitra, S.; Dandamudi, R.B. Nanostructured Diatom-ZrO2 composite as a selective and highly sensitive enzyme free electrochemical sensor for detection of methyl parathion. Appl. Surf. Sci. 2015, 349, 916–923. [Google Scholar] [CrossRef]
- Yu, J.; Ji, G.; Shi, Z.; Wang, X. Corrosion resistance of ZrO2 films under different humidity coal gas conditions at high temperature. J. Alloys Compd. 2019, 783, 371–378. [Google Scholar] [CrossRef]
- Cha, S.W.; Cho, G.Y.; Lee, Y.; Park, T.; Kim, Y.; Lee, J. Effects of carbon contaminations on Y2O3-stabilized ZrO2 thin film electrolyte prepared by atomic layer deposition for thin film solid oxide fuel cells. Cirp Ann. 2016, 65, 515–518. [Google Scholar] [CrossRef]
- Chen, L.; Mashimo, T.; Omurzak, E.; Okudera, H.; Iwamoto, C.; Yoshiasa, A. Pure Tetragonal ZrO2 Nanoparticles Synthesized by Pulsed Plasma in Liquid. J. Phys. Chem. C 2011, 115, 9370–9375. [Google Scholar] [CrossRef]
- Balog, M.; Schieber, M. The chemical vapor deposition and characterization of ZrO2 films organometallic compounds. Thin Solid Films 1997, 47, 109–120. [Google Scholar] [CrossRef]
- Harrop, P.J.; Wanklyn, J.N. The dielectric constant of zirconia. Br. J. Appl. Phys. 1967, 18, 739–742. [Google Scholar] [CrossRef]
- Mahajan, A.M.; Khairnar, A.G.; Thibeault, B.J. High Dielectric Constant ZrO2 Films by Atomic Layer Deposition Technique on Germanium Substrates. Silicon 2016, 8, 345–350. [Google Scholar] [CrossRef]
- Kumar, K.R.; Pridhar, T.; Balaji, V.S.S. Mechanical properties and characterization of zirconium oxide (ZrO2) and coconut shell ash(CSA) reinforced aluminium (Al 6082) matrix hybrid composite. J. Alloys Compd. 2018, 765, 171–179. [Google Scholar] [CrossRef]
- Patil, R.N.; Subbarao, E.C. Axial thermal expansion of ZrO2 and HfO2 in the range room temperature to 1400 °C. J. Appl. Crystallogr. 1969, 2, 281–288. [Google Scholar] [CrossRef]
- Duan, Z.; Luo, D.; Liu, Z.; Zhao, Z.; Zhao, M.; Zhang, J.; Zhao, G. Patterning ZrO2 films surface: Superhydrophilic and superhydrophobic properties. Ceram. Int. 2017, 43, 5089–5094. [Google Scholar] [CrossRef]
- Oluwabi, A.T.; Acik, I.O.; Katerski, A.; Mere, A.; Krunks, M. Structural and electrical characterisation of high-k ZrO2 thin films deposited by chemical spray pyrolysis method. Thin Solid Films 2018, 662, 129–136. [Google Scholar] [CrossRef]
- Piticescu, R.R.; Monty, C.; Taloi, D.; Motoc, A.; Axinte, S. Hydrothermal synthesis of zirconia nanomaterials. J. Eur. Ceram. Soc. 2001, 21, 2057–2060. [Google Scholar] [CrossRef]
- Stefanov, P.; Stoychev, D.; Valov, I.; Kakanakova-Georgieva, A.; Marinova, T. Electrochemical deposition of thin zirconia films on stainless steel 316 L. Mater. Chem. Phys. 2000, 65, 222–225. [Google Scholar] [CrossRef]
- Carta, G.; Habra, N.E.; Rossetto, G.; Zanella, P.; Casarin, M.; Barreca, D.; Maragno, C.; Tondello, E. MgO and CaO stabilized ZrO2 thin films obtained by Metal Organic Chemical Vapor Deposition. Surf. Coat. Technol. 2007, 201, 9289–9293. [Google Scholar] [CrossRef]
- Song, H.; Jeon, H.; Shin, C.; Shin, S.; Jang, W.; Park, J.; Chnag, J.; Choi, J.H.; Kim, Y.; Lim, H.; et al. The effect of ozone concentration during atomic layer deposition on the properties of ZrO2 films for capacitor applications. Thin Solid Films 2016, 619, 317–322. [Google Scholar] [CrossRef]
- Xia, W.; Li, N.; Deng, B.; Zheng, R.; Chen, Y. Corrosion behavior of a sol-gel ZrO2 pore-sealing film prepared on a microarc oxidized aluminum alloy. Ceram. Int. 2019, 45, 11062–11067. [Google Scholar] [CrossRef]
- Boratto, M.H.; Congiu, M.; Santos, S.B.O.d.; Scalvi, L.V.A. Annealing temperature influence on sol-gel processed zirconium oxide thin films for electronic applications. Ceram. Int. 2018, 44, 10790–10796. [Google Scholar] [CrossRef]
- Rudakova, A.V.; Emeline, A.V.; Bulanin, K.M.; Chistyakova, L.V.; Maevskaya, M.V.; Bahnemann, D.W. Self-cleaning Properties of Zirconium Dioxide Thin Films. J. Photochem. Photobiol. A Chem. 2018, 367, 397–405. [Google Scholar] [CrossRef]
- Joung, Y.H.; Choi, W.S.; Shin, Y.; Lee, M.; Kim, H.; Song, W. Characterization of a novel super-hydrophilic coating film as a function of different spin coating speeds. J. Korean Phys. Soc. 2013, 63, 246–250. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, S.; Liao, X.; Wen, J.; Yin, G.; Pu, X.; Yao, Y.; Huang, Z. Effect of heat treatment on surface hydrophilicity-retaining ability of titanium dioxide nanotubes. Appl. Surf. Sci. 2018, 440, 440–447. [Google Scholar] [CrossRef]
- Ye, Q.; Liu, P.Y.; Tang, Z.F.; Zhai, L. Hydrophilic properties of nano-TiO2 thin films deposited by RF magnetron sputtering. Vacuum 2007, 81, 627–631. [Google Scholar] [CrossRef]
- Shirtcliffe, N.J.; McHale, G.; Newton, M.I.; Perry, C.C. Intrinsically Superhydrophobic Organosilica Sol-Gel Foams. Langmuir 2003, 19, 5626–5631. [Google Scholar] [CrossRef]
- Meng, F.; Xiao, L.; Sun, Z. Thermo-induced hydrophilicity of nano-TiO2 thin films prepared by RF magnetron sputtering. J. Alloys Compd. 2009, 485, 848–852. [Google Scholar] [CrossRef]
- Simon, S.M.; Chandran, A.; George, G.; Sajna, M.S.; Valparambil, P.; Kumi-Barmiah, E.; Jose, G.; Biju, P.R.; Joseph, C.; Unnikrishnan, N.V. Development of Thick Superhydrophilic TiO2−ZrO2 Transparent Coatings Realized through the Inclusion of Poly(methyl methacrylate) and Pluronic-F127. ACS Omega 2018, 3, 14924–14932. [Google Scholar] [CrossRef]
- Codato, S.; Carta, G.; Rosetto, G.; Rizzi, G.A.; Zanella, P.; Scardi, P.; Leoni, M. MOCVD Growth and Characterization of ZrO2 Thin Films Obtained from Unusual Organo-Zirconium Precursors. Chem. Vap. Depos. 1999, 5, 159–164. [Google Scholar] [CrossRef]
- Morterra, C.; Cerrato, G.; Emanuel, C.; Bolis, V. On the Surface Acidity of Some Sulfate-Doped ZrO2 Catalysts. J. Catal. 1993, 142, 349–367. [Google Scholar] [CrossRef]
- Garvie, R.C. The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect. J. Phys. Chem. 1965, 69, 1238–1243. [Google Scholar] [CrossRef]
- Cassir, M.; Goubin, F.; Bernay, C.; Vernoux, P.; Lincot, D. Synthesis of ZrO2 thin films by atomic layer deposition: Growth kinetics, structural and electrical properties. Appl. Surf. Sci. 2002, 193, 120–128. [Google Scholar] [CrossRef]
- Li, Z.; Su, K. The direct reaction between CO2 and phenol catalyzedby bifunctional catalyst ZrO2. J. Mol. Catal. A Chem. 2007, 277, 180–184. [Google Scholar] [CrossRef]
- Lin, C.; Zhang, C.; Lin, J. Phase Transformation and Photoluminescence Properties of Nanocrystalline ZrO2 Powders Prepared via the Pechini-type Sol-Gel Process. J. Phys. Chem. C 2007, 111, 3300–3307. [Google Scholar] [CrossRef]
- Lin, J.M.; Hsu, M.C.; Fung, K.Z. Deposition of ZrO2 film by liquid phase deposition. J. Power Sources 2006, 159, 49–54. [Google Scholar] [CrossRef]
- Lucio-Ortiz, C.J.; de la Rosa, J.R.; Hernández-Ramírez, A.; López-Cuellar, E.M.; Beltrán-Pérez, G.; Miranda-Guardiola, R.C.; Pedroza-Solís, C.D. La-, Mn- and Fe-doped zirconia catalysts by sol–gel synthesis: TEM characterization, mass-transfer evaluation and kinetic determination in thecatalytic combustion of trichloroethylene. Colloids Surf. A Physicochem. Eng. Asp. 2010, 371, 81–90. [Google Scholar] [CrossRef]
- Štefanic, G.; Štefanic, I.I.; Music, S. Influence of the synthesis conditions on the properties of hydrous zirconia and the stability of low-temperature t-ZrO2. Mater. Chem. Phys. 2000, 65, 197–207. [Google Scholar] [CrossRef]
- Silva, M.C.; Trolliard, G.; Masson, O.; Guinebretiere, R.; Dauger, A.; Lecomte, A.; Frit, B. Early Stages of Crystallization in Gel Derived ZrO2 Precursors. J. Sol-Gel Sci. Technol. 1997, 8, 419–424. [Google Scholar] [CrossRef]
- Bokhimi, X.; Morales, A.; García-Ruiz, A.; Xiao, T.D.; Chen, H.; Strutt, P.R. Transformation of yttrium-doped hydrated zirconium into tetragonal and cubic nanocrystalline zirconia. J. Solid State Chem. 1999, 142, 409–418. [Google Scholar] [CrossRef]
- Phillippi, C.M.; Mazdiyasni, K.S. Infrared and Raman Spectra of Zirconia Polymorphs. J. Am. Ceram. Soc. 1971, 54, 254–258. [Google Scholar] [CrossRef]
- Gao, Y.; Masuda, Y.; Seo, W.S.; Ohta, H.; Koumoto, K. TiO2 nanoparticles prepared using an aqueous peroxotitanate solutions. Ceram. Int. 2004, 30, 1365–1368. [Google Scholar] [CrossRef]
- Chen, S.; Yin, Y.; Wang, D.; Liu, Y.; Wang, X. Structures, growth modes and spectroscopic properties of small zirconia clusters. J. Cryst. Growth 2005, 282, 498–505. [Google Scholar] [CrossRef]
- Navío, J.A.; Hidalgo, M.C.; Colón, G.; Botta, S.G.; Litter, M.I. Preparation and physicochemical properties of ZrO2 and Fe/ZrO2 Prepared by a sol-gel technique. Langmuir 2001, 17, 202–210. [Google Scholar] [CrossRef]
- Shukla, S.; Seal, S. Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia. Int. Mater. Rev. 2005, 50, 45–64. [Google Scholar] [CrossRef]
- Osendi, M.I.; Moya, J.S.; Serna, C.J.; Soria, J. Metastability of Tetragonal Zirconia Powders. J. Am. Ceram. Soc. 1985, 68, 135–139. [Google Scholar] [CrossRef]
- Badenes, J.A.; Vicent, J.B.; Llusar, M.; Tena, M.A.; Monros, G. The nature of Pr-ZrSiO4 yellow ceramic pigment. J. Mater. Sci. 2002, 37, 1413–1420. [Google Scholar] [CrossRef]
- Bermúdez-Reyes, B.; Contreras-García, M.; Almaral-Sánchez, J.; Espitia-Cabrera, I.; Espinoza-Beltrán, F. Chemical anchorage of hydroxyapatite on 316LSS using a ZrO2 interlayer for orthopedic prosthesis applications. Superf. Vacío 2012, 25, 150–156. [Google Scholar]
- Prakashbabu, D.; Krishna, R.H.; Nagabhushana, B.M.; Nagabhushana, H.; Shivakumara, C.; Chakradar, R.P.S.; Ramalingam, H.B.; Sharma, S.C.; Chandramohan, R. Low temperature synthesis of pure cubic ZrO2 nanopowder: Structural and luminescence studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 122, 216–222. [Google Scholar] [CrossRef]
- Selvam, N.C.S.; Manikandan, A.; Kennedy, L.J.; Vijaya, J.J. Comparative investigation of zirconium oxide (ZrO2) nano and microstructures for structural, optical and photocatalytic properties. J. Colloid Interface Sci. 2013, 389, 91–98. [Google Scholar] [CrossRef]
- Taguchi, M.; Takami, S.; Adschiri, T.; Nakane, T.; Sato, K.; Naka, T. Simple and rapid synthesis of ZrO2 nanoparticles from Zr(OEt)4 and Zr(OH)4 using a hydrothermal method. CrystEngComm 2012, 14, 2117–2123. [Google Scholar] [CrossRef]
- Li, C.; Li, M. UV Raman spectroscopic study on the phase transformation of ZrO2, Y2O3–ZrO2 and SO42−/ZrO2. J. Raman Spectrosc. 2002, 33, 301–308. [Google Scholar] [CrossRef]
- Thejaswini, T.V.L.; Prabhakaran, D.; Maheswari, M.A. Synthesis of mesoporous worm-like ZrO2–TiO2 monoliths and their photocatalytic applications towards organic dye degradation. J. Photochem. Photobiol. A Chem. 2017, 344, 212–222. [Google Scholar] [CrossRef]
- Bensaha, R.; Bensouyad, H. Synthesis, Characterisation and roperties of Zirconium oxide doped Titanium oxide thin films obtained via Sol-gel process. In Heat Treatment-Conventional and Novel Applications; Czerwinsk, F., Ed.; Intech open Sci./open mind: Rijeka, Croatia, 2012; pp. 207–234. [Google Scholar]
- Liu, A.; Liu, G.; Zhu, H.; Shin, B.C.; Fortunato, E.; Martins, R.; Shan, F. Hole mobility modulation of solution-processed nickel oxide thin-film transistor based on high-k dielectric. Appl. Phys. Lett. 2016, 108, 233506. [Google Scholar] [CrossRef]
- Yoo, D.; Kim, I.; Kim, S.; Hahn, C.H.; Lee, C.; Cho, S. Effects of annealing temperature and method on structural and optical properties of TiO2 films prepared by RF magnetron sputtering at room temperatura. Appl. Surf. Sci. 2007, 253, 3888–3892. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, A.; Liu, G.; Jiang, G.; Meng, Y.; Fortunato, E.; Martins, R.; Shan, F. Low- temperature, nontoxic water-induced high-k zirconium oxide dielectrics for low-voltage, high-performance oxide thin-film transistors. J. Mater. Chem. C 2016, 4, 10715–10721. [Google Scholar] [CrossRef]
- Gao, Y.; Masuda, Y.; Ohta, H.; Koumoto, K. Room-temperature preparation of ZrO2 precursor thin in an aqueous peroxozirconium-complex solution. Chem. Mater. 2004, 16, 2615–2622. [Google Scholar] [CrossRef]
- Liu, M.; Fang, Q.; He, G.; Li, L.; Zhu, L.Q.; Li, G.H.; Zhang, L.D. Effect of post deposition annealing on the optical properties of HfOxNy films. Appl. Phys. Lett. 2006, 88, 192904. [Google Scholar] [CrossRef]
- Cao, H.Q.; Qiu, X.Q.; Luo, B.; Liang, Y.; Zhung, Y.H.; Tan, R.Q.; Zhao, M.J.; Zhu, Q.M. Synthesis and room-temperature ultraviolet photoluminescence properties of zirconia nanowires. Adv. Funct. Mater. 2004, 14, 243–246. [Google Scholar] [CrossRef]
- Emelie, A.; Kataeva, G.V.; Litke, A.S.; Rudakova, A.V.; Ryabchuk, V.K.; Serpone, N.J. Spectroscopic and photoluminescence studies of a wide band gap insulating Material: Powdered and colloidal ZrO2 sols. Langmuir 1998, 14, 5011–5022. [Google Scholar] [CrossRef]
- Kumari, L.; Li, W.Z.; Xu, J.M.; Leblanc, R.M.; Wang, D.Z.; Li, Y.; Guo, H.; Zhang, J. Controlled hydrothermal synthesis of zirconium oxide nanostructures and their optical properties. Cryst. Growth Des. 2009, 9, 3874–3880. [Google Scholar] [CrossRef]
- Kumar, C.S.S.R. Nanomaterials-toxicity, Health and Environmental Issues; Wiley- VCH: Weinhein, Germany, 2006. [Google Scholar]
- An, M.; Li, L.; Zhang, J.; Zhao, L.; Yang, C. Three-dimensional ordered hollow sphere composite Pt/TiO2-ZrO2: Enhanced performance of photocatalytic degradation and photocatalytic hydrogen evolution. J. Nanoparticles Res. 2019, 21, 117. [Google Scholar] [CrossRef]
- Kumaresan, M.; Anand, K.V.; Govindaraju, K.; Tamilselvan, S.; Kumar, V.G. Seaweed Sargassum wightii mediated preparation of zirconia (ZrO2) nanoparticles and their antibacterial activity against gram positive and gram negative bacteria. Microb. Pathog. 2018, 124, 311–315. [Google Scholar] [CrossRef]
- Chauhan, V.; Kumar, R. Dense electronic excitation induced modifications in nanocrystalline zirconium oxide thin films: Detailed analysis of optical and surface topographical. Opt. Mater. 2019, 89, 576–590. [Google Scholar] [CrossRef]
- Carević, M.V.; Abazović, N.D.; Savić, T.D.; Novaković, T.B.; Pjević, D.J.; Čomor, M.I. Binary oxide ceramics for enhanced phenols degradation under simulated solar light. J. Am. Ceram. Soc. 2018, 101, 1420–1431. [Google Scholar] [CrossRef]
- Vaizoğullar, A.I. ZnO/ZrO2 composites: Synthesis characterization and photocatalytic performance in the degradation of oxytetracycline antibiotic. Mater. Technol. 2019, 34, 433–443. [Google Scholar] [CrossRef]
- Smits, K.; Grigorjeva, L.; Millers, D.; Sarakovskis, A.; Grabis, J.; Lojkowski, W. Intrinsic defect related luminescence in ZrO2. J. Lumin. 2011, 131, 2058–2062. [Google Scholar] [CrossRef]
- Prakashbabu, D.; Krishna, R.H.; Nagabhushana, B.M.; Nagabhushana, H.; Shivakumara, C.; Ramalingam, H.B.; Chandramohan, R. Influence of Precursors on Photoluminescence of Hydrothermally Derived ZrO2. J. Chem. Eng. Res. 2014, 2, 105–111. [Google Scholar]
- Singh, A.K.; Viswanath, V.; Janu, V.C. Synthesis, effect of capping agents, structural, optical and photoluminescence properties of ZnO nanoparticles. J. Lumin. 2009, 29, 874–878. [Google Scholar] [CrossRef]
- Liang, J.; Deng, Z.; Jiang, X.; Li, F.; Li, Y. Photoluminescence of tetragonal ZrO2 nanoparticles synthesized by microwave irradiation. Inorg. Chem. 2002, 41, 3602–3604. [Google Scholar] [CrossRef]
- Cong, Y.; Li, B.; Lei, B.; Li, W. Long lasting phosphorescent properties of Ti doped ZrO2. J. Lumin. 2007, 126, 822–826. [Google Scholar] [CrossRef]
- Pattanaik, S.; Martha, S.; Sharma, M.K.; Pradhan, S.K.; Sakthivel, R.; Chatterjee, R.; Mishra, D.K. Enhancement of room temperature ferromagnetism in nanocrystalline Zr1-xMnxO2 by the suppression of monoclinic structure of zirconia. J. Magn. Magn. Mater. 2020, 494, 165758. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, B.; Fu, Z.; Dong, W.; Yang, Y.; Liu, W. UV–blue photoluminescence from ZrO2 nanopowders prepared via glycine nitrate process. Appl. Phys. A 2005, 81, 691–694. [Google Scholar] [CrossRef]
- Huang, M.H.; Wu, Y.; Feick, H.; Tran, N.; Weber, E.; Yang, P. Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport. Adv. Mater. 2001, 13, 113–116. [Google Scholar] [CrossRef]
- Mansilla, Y.; Arce, M.; Gonzalez-Oliver, C.; Troiani, H.; Serquis, A. Synthesis and characterization of ZrO2 and YSZ thin films. Mater. Today Proc. 2019, 14, 92–95. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, S.; Yang, Y.; Liao, C.; Yan, C. Annealing effects on the phase and microstructure transformations of nanocrystalline (ZrO2)1-x(Sc2O3)x(x = 0.02–0.16) thin films deposited by sol-gel method. Solid State Commun. 2002, 122, 439–444. [Google Scholar] [CrossRef]
- Martin, N.; Rousselot, C.; Rondot, D.; Palmino, F.; Mercier, R. Microstructure modification of amorphous titanium oxide thin films during annealing treatment. Thin Solid Films 1997, 300, 113–121. [Google Scholar] [CrossRef]
- Takahashi, T.; Nakabayashi, H.; Terasawa, T.; Masugata, K. Atomic force microscopy observation of TiO2 films deposited by dc reactive sputtering. J. Vac. Sci. Technol. A 2002, 20, 1205–1209. [Google Scholar] [CrossRef]
- Song, J.W.; Zeng, D.L.; Fan, L.W. Temperature dependence of contact angles of water on a stainless steel surface at elevated temperatures and pressures: In situ characterization and thermodynamic analysis. J. Colloid Interface Sci. 2020, 561, 870–880. [Google Scholar] [CrossRef]
- Yang, M.W.; Lin, S.Y. A method for correcting the contact angle from the θ/2 method. Colloids Surf. A Physicochem. Eng. Asp. 2003, 220, 199–210. [Google Scholar] [CrossRef]
- Stalder, A.F.; Melchior, T.; Müller, M.; Sage, D.; Blu, T.; Unser, M. Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids Surf. A Physicochem. Eng. Asp. 2010, 364, 72–81. [Google Scholar] [CrossRef]
- Law, K.Y.; Zhao, H. Surface Wetting Characterization, Contact Angle, and Fundamentals; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 978-3-319-25212-4. [Google Scholar]
- Kong, X.; Hu, Y.; Wang, X.; Pan, W. Effect of surface morphology on wettability conversión. J. Adv. Ceram. 2016, 5, 284–290. [Google Scholar] [CrossRef]
- Salari, S.; Ghodsi, F.E. Novel superhydrophilic and hydrophobic nanostructured agar-like zirconia thin films: Manipulating of morphology with PEG/CTAB. J. Mater. Sci. 2018, 53, 11986–12004. [Google Scholar] [CrossRef]
- Hiley, I.; Fisher, J.M.; Thompsett, D.; Kashtiban, R.J.; Sloan, J.; Walton, R.I. Incorporation of square-planar Pd2+ in fluorite CeO2: Hydrothermal preparation, local structure, redox properties and stability. J. Mater. Chem. A 2015, 3, 13072–13079. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Méndez-López, A.; Zelaya-Ángel, O.; Toledano-Ayala, M.; Torres-Pacheco, I.; Pérez-Robles, J.F.; Acosta-Silva, Y.J. The Influence of Annealing Temperature on the Structural and Optical Properties of ZrO2 Thin Films and How Affects the Hydrophilicity. Crystals 2020, 10, 454. https://doi.org/10.3390/cryst10060454
Méndez-López A, Zelaya-Ángel O, Toledano-Ayala M, Torres-Pacheco I, Pérez-Robles JF, Acosta-Silva YJ. The Influence of Annealing Temperature on the Structural and Optical Properties of ZrO2 Thin Films and How Affects the Hydrophilicity. Crystals. 2020; 10(6):454. https://doi.org/10.3390/cryst10060454
Chicago/Turabian StyleMéndez-López, A., O. Zelaya-Ángel, M. Toledano-Ayala, I. Torres-Pacheco, J.F. Pérez-Robles, and Y.J. Acosta-Silva. 2020. "The Influence of Annealing Temperature on the Structural and Optical Properties of ZrO2 Thin Films and How Affects the Hydrophilicity" Crystals 10, no. 6: 454. https://doi.org/10.3390/cryst10060454
APA StyleMéndez-López, A., Zelaya-Ángel, O., Toledano-Ayala, M., Torres-Pacheco, I., Pérez-Robles, J. F., & Acosta-Silva, Y. J. (2020). The Influence of Annealing Temperature on the Structural and Optical Properties of ZrO2 Thin Films and How Affects the Hydrophilicity. Crystals, 10(6), 454. https://doi.org/10.3390/cryst10060454