Electronic Structure and High Magnetic Properties of (Cr, Co)-codoped 4H–SiC Studied by First-Principle Calculations
Abstract
:1. Introduction
2. Model and Computational Method
3. Results and Discussion
3.1. Cr and Co-doped 4H–SiC
3.2. (Cr, Co)-codoped 4H–SiC
3.3. (Cr, Co, V)-codoped 4H–SiC
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kacman, P. Spin interactions in diluted magnetic semiconductors and magnetic semiconductor structures. Semicond. Sci. Technol. 2001, 16, R25–R39. [Google Scholar] [CrossRef]
- Sato, K.; Bergqvist, L.; Kudrnovsk, J. First-principles theory of dilute magnetic semiconductors. Rev. Mod. Phys. 2010, 82, 1633–1690. [Google Scholar] [CrossRef]
- Masrour, R.; Hlil, E.K.; Hamedoun, M.; Benyoussef, A. Electronic and magnetic structures of FeSn compound investigated by first principle, mean field and series expansions calculations. Phys. Stat. Mech. Its Appl. 2014, 414, 249–253. [Google Scholar] [CrossRef]
- Akinaga, H.; Ohno, H. Semiconductor spintronics. Phys. Status Solidi 2012, 251, 1651. [Google Scholar] [CrossRef]
- Masrour, R.; Hlil, E.K.; Hamedoun, M.; Benyoussef, A. Antiferromagnetic spintronics of Mn2Au: An experiment, first principle, mean field and series expansions calculations study. J. Magn. Magn. Mater. 2015, 393, 600–603. [Google Scholar] [CrossRef]
- Lin, L.; Huang, J.T.; Yu, W.Y.; Zhu, L.H.; Wang, P.T.; Xu, Y.H.; Tao, H.L.; Zhang, Z.Y. First principles study of the electronic and magnetic properties of (Co,Ga) co-doped LiNbO3. J. Appl. Phys. 2019, 125, 073901. [Google Scholar] [CrossRef]
- Shinde, S.R.; Ogale, S.B.; Higgins, J.S.; Zheng, H.; Millis, A.J.; Kulkarni, V.N.; Ramesh, R.; Greene, R.L.; Venkatesan, T. Co-occurrence of Superparamagnetism and Anomalous Hall Effect in Highly Reduced Cobalt-Doped RutileTiO2. Phys. Rev. Lett. 2004, 92, 166601. [Google Scholar] [CrossRef] [Green Version]
- Tietze, T.; Gacic, M.; Schütz, G.; Jakob, G.; Brück, S.; Goering, E. XMCD studies on Co and Li doped ZnO magnetic semiconductors. New J. Phys. 2018, 10, 055009. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Yin, H.H.; Shen, Y.H. Magnetic Properties in Nonmagnetic Metal Atom Adsorption on SiC Monolayer: First-Principles Study. J. Supercond. Nov. Magn. 2017, 31, 1–6. [Google Scholar] [CrossRef]
- Jiang, Z.; Xu, X.; Wu, H.; Zhang, F.; Jin, Z. Ab initio calculation of SiC polytypes. Solid State Commun. 2002, 123, 263–266. [Google Scholar] [CrossRef]
- Kim, K.J.; Kim, Y.W. Fe doping and magnetic properties of zincblende SiC ceramics. J. Eur. Ceram. Soc. 2012, 32, 1149–1155. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, D.; Zhang, H.; Cheng, Z.; Huang, Z. Ferromagnetism of Al-doped 6H-SiC and theoretical calculation. Acta Phys. Sin. 2017, 66, 307–313. [Google Scholar]
- Zhang, C. Density-functional theory study of long-range ferromagnetic properties in Mg-doped SiC. Solid State Commun. 2010, 150, 2310–2313. [Google Scholar] [CrossRef]
- Weber, J.R.; Koehl, W.F.; Varley, J.B.; Janotti, A.; Buckley, B.B.; van de Walle, C.G.; Awschalom, D.D. Defects in SiC for quantum computing. J. Appl. Phys. 2011, 109, 102417. [Google Scholar] [CrossRef]
- Christle, D.J.; Falk, A.L.; Andrich, P.; Klimov, P.V.; Hassan, J.U.; Son, N.T.; Janzen, E.; Ohshima, T.; Awschaloml, D.D. Isolated electron spins in silicon carbide with millisecond coherence times. Nat. Mater. 2015, 14, 160–163. [Google Scholar] [CrossRef] [Green Version]
- Widmann, M.; Lee, S.Y.; Rendler, T.; Son, N.T.; Fedder, H.; Paik, S.; Yang, L.P.; Zhao, N.; Yang, S.; Booker, I.; et al. Coherent control of single spins in silicon carbide at room temperature. Nat. Mater. 2015, 14, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Pan, F. The Electronic Structures and Magnetism in Al Doped 4H-SiC: The First-Principles Calculation. J. Alloys Compd. 2016, 687, 227–231. [Google Scholar] [CrossRef]
- Zhang, X.; Han, J.C.; Zhou, J.G.; Xin, C.; Zhang, Z.H.; Song, B. Ferromagnetism in homogeneous (Al,Co)-codoped 4H-silicon carbides. J. Magn. Magn. Mater. 2014, 363, 34–42. [Google Scholar] [CrossRef]
- Yu, L.; Jin, H.; Liu, D.; Dai, Y.; Guo, M.; Huang, B.; Zhang, Z. Investigation of ferromagnetism in Al-doped 4H-SiC by density functional theory. Chem. Phys. Lett. 2010, 496, 276–279. [Google Scholar] [CrossRef]
- Song, B.; Bao, H.Q.; Li, H.; Lei, M.; Jian, J.K.; Han, J.C.; Zhang, X.H.; Meng, S.H.; Wang, W.Y.; Chen, X.L. Magnetic properties of Mn-doped 6H-SiC. Appl. Phys. Lett. 2009, 94, 102508. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.H.; Takano, F.; Ofuchi, H.; Akinaga, H. Magnetic properties of transparent SiC:Mn films synthesized on SiC substrates. J. Magn. Magn. Mater. 2007, 310, 2141–2143. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, Q.W. Magnetic properties of Cr-doped 6H-SiC single crystals. J. Magn. Magn. Mater. 2007, 313, 111–114. [Google Scholar] [CrossRef]
- Ma, P.T.; Lei, T.M.; Zhang, Y.M.; Liu, J.J.; Zhang, Z.Y. First-Principle Study on Magnetic Properties of TM-Doped 6H-SiC. Adv. Mater. Res. 2013, 709, 197–200. [Google Scholar] [CrossRef]
- Azri, A.M.; Elzain, M.; Bouziane, K.; Cherif, S.M.; Declemy, A.; Thome, L. Model for Mn in 6H-SiC from first-principle studies. J. Appl. Phys. 2013, 113, 17C305. [Google Scholar] [CrossRef]
- Bouziane, K.; Mamor, M.; Elzain, M. Defects and magnetic properties in Mn-implanted 3C-SiC epilayer on Si(100): Experiments and first-principles calculations. Phys. Rev. B. 2008, 78, 195305. [Google Scholar] [CrossRef]
- Luo, M.; Shen, Y.H. Magnetic Properties of SiC Monolayer with Different Nonmagnetic Metal Dopants. J. Supercond. Nov. Magn. 2018, 31, 3277–3282. [Google Scholar] [CrossRef]
- Pacheco, J.M.; Gueorguiev, G.K.; Martins, J.L. First-principles study of the possibility of condensed phases of endohedral silicon cage clusters. Phys. Rev. B. 2002, 66, 334011–334013. [Google Scholar] [CrossRef]
- Oliveira, M.I.A.; Rivelino, R.; Mota, F.d.; Gueorguiev, G.K. Optical Properties and Quasiparticle Band Gaps of Transition-Metal Atoms Encapsulated by Silicon Cages. J. Phys. Chem. C 2014, 118, 5501–5509. [Google Scholar] [CrossRef] [Green Version]
- Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 14, 2717–2744. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.O.; Gunnarsson, O. The density functional formalism, its applications and prospects. Rev. Mod. Phys. 1989, 61, 689–746. [Google Scholar] [CrossRef]
- Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B Condensed Matter 1992, 45, 13244–13249. [Google Scholar] [CrossRef] [PubMed]
- Marsman, M.; Paier, J.; Stroppa, A.; Kresse, G. Hybrid functionals applied to extended systems. J. Phy. Condens. Matter 2008, 20, 064201. [Google Scholar] [CrossRef] [PubMed]
- Benouis, M.; Azzaz, Y.; Ameri, M.; Arbouche, O.; Bennadji, A.; Bensaid, D.; Al-Douri, Y. Electronic and Magnetic Properties of Cr2GeC with GGA+U Approximation. J. Supercond. Nov. Magn. 2016, 29, 1267–1272. [Google Scholar] [CrossRef]
- Rozsalyi, E.; Verger, L.; Cabaret, D.; Juhin, A. DFT+U calculation of the Cr K pre-edge structures in ZnCr2O4. J. Phys. Conf. Ser. 2016, 712, 012011. [Google Scholar] [CrossRef]
- Lin, L.; Huang, J.T.; Yu, W.Y.; Tao, H.L. Electronic structures and magnetic properties of (Ni,Al) co-doped 4H-SiC: A first-principles study. Comput. Mater. Sci. 2018, 155, 169–174. [Google Scholar] [CrossRef]
- Zhang, C.; Yan, S. First-principles study on ferromagnetism in Mg-doped SnO2. Appl. Phys. Lett. 2009, 95, 232108. [Google Scholar] [CrossRef]
- Wang, H.; Yan, Y.; Du, X.; Liu, X.; Li, K.; Jin, H. Origin of ferromagnetism in Ni-doped SnO2: First-principles calculation. J. Appl. Phys. 2010, 107, 103923. [Google Scholar] [CrossRef]
- Sun, X.K.; Liu, J.W.; Liu, K.L.; Wang, S.H.; Zhao, L.L.; Qin, W.; Wang, G.L.; Meng, M.; Li, J.T.; Dong, X. Effect of temperature on the structure and magnetic properties of Co doped SiC films. Superlattices Microstruct. 2017, 107, 144–149. [Google Scholar] [CrossRef]
- Sena, N.; Dussan, A.; Mesa, F.; Castano, E. Electronic structure and magnetism of Mn-doped GaSb for spintronic applications: A DFT study. J. Appl. Phys. 2016, 120, 110. [Google Scholar] [CrossRef]
- Kudrnovsky, J.; Turek, I.; Drchal, V.; Maca, F.; Weinberger, P. Exchange interactions in III-V and group-IV diluted magnetic semiconductors. Phys. Rev. B 2004, 69, 115208. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Yan, L.B.; Huang, J.T.; Tao, H.L.; Zhang, J.S.; Yu, W.Y.; Xu, Y.H. First-principles investigations of the effect of V and Fe dopants on the magnetic and optical properties of 4H-SiC. Thin Solid Films 2020, 709, 138182. [Google Scholar] [CrossRef]
- Zywietz, A.; Furthmüller, J.F.; Bechstedt, F. Vacancies in SiC: influence of Jahn-Teller distortions, spin effects, and crystal structure. Phys. Rev. B 1999, 59, 15166–15180. [Google Scholar] [CrossRef]
- Salvador, M.; Perlado, J.M.; Mattoni, A.; Bernardini, F.; Colombo, L. Defect energetics beta-of-SiC using a new tight-binding molecular dynamics model. J. Nucl. Mater. 2004, 329–333, 1219–1222. [Google Scholar] [CrossRef]
Configuration | d (Cr-Co) | (Å) | M () | Coupling | ||||||
---|---|---|---|---|---|---|---|---|---|---|
(a,b) | a | b | c | (NSP) | (SP) | (meV) | Total | Cr | Co | |
(0,1) | 9.28 | 9.28 | 10.14 | 3.082 | 3.028 | −223.3 | 5.98 | 2.16 | 2.98 | FM |
(0,2) | 9.27 | 9.28 | 10.12 | 5.338 | 5.355 | 614.0 | 6.04 | 2.35 | 2.61 | AFM |
(0,3) | 9.27 | 9.27 | 10.12 | 6.163 | 6.241 | 668.6 | 6.01 | 2.39 | 2.59 | AFM |
(0,4) | 9.27 | 9.28 | 10.12 | 8.153 | 8.204 | 615.4 | 6.02 | 2.41 | 2.58 | AFM |
(0,5) | 9.28 | 9.28 | 10.12 | 4.360 | 4.363 | 236.2 | 5.99 | 2.36 | 2.61 | AFM |
(0,6) | 9.28 | 9.27 | 10.13 | 5.339 | 5.348 | 258.9 | 6.03 | 2.34 | 2.62 | AFM |
(0,7) | 9.29 | 9.29 | 10.14 | 6.892 | 6.959 | −84.0 | 6.03 | 2.17 | 2.99 | FM |
(0,8) | 9.28 | 9.29 | 10.13 | 8.155 | 8.205 | −179.2 | 5.96 | 2.13 | 2.97 | FM |
(0,9) | 9.29 | 9.28 | 10.14 | 5.344 | 5.346 | −204.9 | 6.03 | 2.12 | 3.01 | FM |
(0,10) | 9.28 | 9.29 | 10.13 | 6.169 | 6.198 | −244.3 | 6.02 | 2.16 | 3.00 | FM |
(0,11) | 9.30 | 9.29 | 10.14 | 6.896 | 6.927 | 9.6 | 6.01 | 2.16 | 3.00 | AFM |
(0,12) | 9.28 | 9.29 | 10.13 | 8.158 | 8.189 | −227.7 | 6.01 | 2.13 | 3.00 | FM |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Huang, J.; Liu, X.; Lin, L.; Tao, H. Electronic Structure and High Magnetic Properties of (Cr, Co)-codoped 4H–SiC Studied by First-Principle Calculations. Crystals 2020, 10, 634. https://doi.org/10.3390/cryst10080634
Zhang M, Huang J, Liu X, Lin L, Tao H. Electronic Structure and High Magnetic Properties of (Cr, Co)-codoped 4H–SiC Studied by First-Principle Calculations. Crystals. 2020; 10(8):634. https://doi.org/10.3390/cryst10080634
Chicago/Turabian StyleZhang, Mengyu, Jingtao Huang, Xiao Liu, Long Lin, and Hualong Tao. 2020. "Electronic Structure and High Magnetic Properties of (Cr, Co)-codoped 4H–SiC Studied by First-Principle Calculations" Crystals 10, no. 8: 634. https://doi.org/10.3390/cryst10080634
APA StyleZhang, M., Huang, J., Liu, X., Lin, L., & Tao, H. (2020). Electronic Structure and High Magnetic Properties of (Cr, Co)-codoped 4H–SiC Studied by First-Principle Calculations. Crystals, 10(8), 634. https://doi.org/10.3390/cryst10080634