Study on Phase Transformation Orientation Relationship of HCP-FCC during Rolling of High Purity Titanium
Abstract
:1. Introduction
2. Experimental Material and Procedure
3. Results and Discussion
3.1. TEM Observations
3.2. Pole Figures
3.3. Matrix of Orientation Relationships
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yu, Q.; Kacher, J.; Gammer, C.; Traylor, R.; Samanta, A.; Yang, Z.Z.; Minor, A.M. In situ TEM observation of FCC Ti formation at elevated temperatures. Scr. Mater. 2017, 140, 9–12. [Google Scholar] [CrossRef] [Green Version]
- Shirooyeh, M.; Xu, J.; Langdon, T.G. Microhardness evolution and mechanical characteristics of commercial purity titanium processed by high-pressure torsion. Mater. Sci. Eng. 2014, 614, 223–231. [Google Scholar] [CrossRef]
- Hong, D.H.; Lee, T.W.; Lim, S.H.; Kim, W.Y.; Hwang, S.K. Stress-induced hexagonal close-packed to face-centered cubic phase transformation in commercial-purity titanium under cryogenic plane-strain compression. Scr. Mater. 2013, 69, 405–408. [Google Scholar] [CrossRef]
- Chakraborty, J.; Kumar, K.; Ranjan, R.; Chowdhury, S.G.; Singh, S.R. Thickness-dependent fcc–hcp phase transformation in polycrystalline titanium thin films. Acta Mater. 2011, 59, 2615–2623. [Google Scholar] [CrossRef]
- Hao, P.D.; Chen, P.; Deng, L.; Li, F.X.; Yi, J.H.; Şopu, D.; Eckert, J.; Tao, J.M.; Liu, Y.C.; Bao, R. Anisotropic elastic and thermodynamic properties of the HCP-Titanium and the FCC-Titanium structure under different pressures. J. Mater. Res. Technol. 2020, 9, 3488–3501. [Google Scholar] [CrossRef]
- Zheng, X.D.; Gong, M.Y.; Xiong, T.; Ge, H.L.; Yang, L.X.; Zhou, Y.T.; Zheng, S.J.; Wang, J.; Ma, X.L. Deformation induced FCC lamellae and their interaction in commercial pure Ti. Scr. Mater. 2019, 162, 326–330. [Google Scholar] [CrossRef]
- Zhao, H.; Ding, N.J.; Ren, Y.P.; Xie, H.B.; Yang, B.; Qin, G.W. Shear-induced hexagonal close-packed to face-centered cubic phase transition in pure titanium processed by equal channel angular drawing. J. Mater. Sci. 2019, 54, 7953–7960. [Google Scholar] [CrossRef]
- Kou, W.J.; Sun, Q.Y.; Xiao, L.; Sun, J. Plastic deformation-induced HCP-to-FCC phase transformation in submicron-scale pure titanium pillars. J. Mater. Sci. 2020, 55, 2193–2201. [Google Scholar] [CrossRef]
- Wei, B.Q.; Ni, S.; Liu, Y.; Song, M. Three dimensional crystallographic orientation relationships for hexagonal close packed structure to face centered cubic structure transformation in pure titanium. Scr. Mater. 2019, 169, 46–51. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, X.; Li, J.; Wang, H.M. Formation of face-centered cubic titanium in laser surface re-melted commercially pure titanium plate. J. Mater. Sci. Technol. 2018, 34, 767–773. [Google Scholar] [CrossRef]
- Jing, R.; Liu, C.Y.; Ma, M.Z.; Liu, R.P. Microstructural evolution and formation mechanism of FCC titanium during heat treatment processing. J. Alloys Compd. 2013, 552, 202–207. [Google Scholar] [CrossRef]
- Jing, R.; Liang, S.X.; Liu, C.Y.; Ma, M.Z.; Liu, R.P. Aging effects on the microstructures and mechanical properties of the Ti–20Zr–6.5Al–4V alloy. Mater. Sci. Eng. 2013, 559, 474–479. [Google Scholar] [CrossRef]
- Bolokang, A.S.; Phasha, M.J.; Motaung, D.E.; Cummings, F.R.; Muller, T.F.G.; Arendse, C.J. Microstructure and phase transformation on milled and unmilled Ti induced by water quenching. Mater. Lett. 2014, 132, 157–161. [Google Scholar] [CrossRef]
- Ren, J.Q.; Sun, Q.Y.; Xiao, L.; Ding, X.D.; Sun, J. Phase transformation behavior in titanium single-crystal nanopillars under [0001] orientation tension: A molecular dynamics simulation. Comp. Mater. Sci. 2014, 92, 8–12. [Google Scholar] [CrossRef]
- Yang, J.X.; Zhao, H.L.; Gong, H.R.; Song, M.; Ren, Q.Q. Proposed mechanism of HCP → FCC phase transition in titianium through first principles calculation and experiments. Sci. Rep. 2018, 8, 1992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.; Wang, F.; Li, B. Transitory phase transformations during {101¯2} twinning in titanium. Acta Mater. 2019, 171, 65–78. [Google Scholar] [CrossRef]
- Wei, B.; Ni, S.; Liu, Y.; Liao, X.; Song, M. Phase transformation and structural evolution in a Ti-5at.% Al alloy induced by cold-rolling. J. Mater. Sci. Technol. 2020, 49, 211–223. [Google Scholar] [CrossRef]
- Liu, Y.G.; Li, M.Q.; Liu, H.J. Deformation induced face-centered cubic titanium and its twinning behavior in Ti–6Al–4V. Scr. Mater. 2016, 119, 5–8. [Google Scholar] [CrossRef]
- Ma, X.; Guo, X.; Fu, M.; Qiao, Y. In-situ TEM observation of hcp-Ti to fcc-Ti phase transformation in Nb-Ti-Si based alloys. Mater. Charact. 2018, 142, 332–339. [Google Scholar] [CrossRef]
- Niu, L.; Wang, S.; Chen, C.; Qian, S.F.; Liu, R.; Li, H.; Liao, B.; Zhong, Z.H.; Lu, P.; Wang, M.P. Mechanical behavior and deformation mechanism of commercial pure titanium foils. Mater. Sci. Eng. 2017, 707, 435–442. [Google Scholar] [CrossRef]
- Bai, F.; Yin, L.; Zhao, W.; Zhou, H.; Song, M.; Liu, Y.; Liu, X. Deformational behavior of face-centered cubic (FCC) phase in high-pure titanium. Mater. Sci. Eng. 2021, 800, 140287. [Google Scholar] [CrossRef]
- Ren, L.; Xiao, W.; Kent, D.; Wan, M.; Ma, C.; Zhou, L. Simultaneously enhanced strength and ductility in a metastable β-Ti alloy by stress-induced hierarchical twin structure. Scr. Mater. 2020, 184, 6–11. [Google Scholar] [CrossRef]
- Fu, Y.; Xiao, W.L.; Kent, D.; Dargusch, M.S.; Wang, J.S.; Zhao, X.Q.; Ma, C.L. Ultrahigh strain hardening in a transformation-induced plasticity and twinning-induced plasticity titanium alloy. Scr. Mater. 2020, 187, 285–290. [Google Scholar] [CrossRef]
- Zhou, P.; Zhu, G.-Z. Strain Accommodations among Twin Variants in Ti and Mg. Crystals 2021, 11, 453. [Google Scholar] [CrossRef]
- Dyakonov, G.S.; Mironov, S.; Semenova, I.P.; Valiev, R.Z.; Semiatin, S.L. EBSD analysis of grain-refinement mechanisms operating during equal-channel angular pressing of commercial-purity titanium. Acta Mater. 2019, 173, 174–183. [Google Scholar] [CrossRef]
- Zu, Q.; Guo, Y.-F.; Yao, X. Surface and orientation effects on stress-induced hcp-fcc phase transformation in Ti nanopillars. Appl. Surf. Sci. 2020, 509, 145234. [Google Scholar] [CrossRef]
- Yu, Q.B.; Liu, X.H.; Tang, D.L. Extreme Extensibility of Copper Foil under Compound Forming Conditions. Sci. Rep. 2013, 3, 3556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.D.; Liu, X.H.; Liu, L.Z.; Song, M. Crystal plasticity finite element simulation of slip and deformation in ultrathin copper strip rolling. Acta Metall. Sin. 2016, 52, 120–128. [Google Scholar] [CrossRef]
- Wang, S.; Niu, L.; Chen, C.; Pang, Y.; Liao, B.; Zhong, Z.H.; Lu, P.; Li, P.; Wu, X.D.; Coenen, J.W. Size effects on the tensile properties and deformation mechanism of commercial pure titanium foils. Mater. Sci. Eng. 2018, 730, 244–261. [Google Scholar] [CrossRef]
- Bai, F.M.; Ye, X.; Zhang, H.Y.; Zhou, H.W.; Song, M.; Sun, Y.X.; He, Y.Z. A significant increase in the hardness of nanotwinned titanium alloys prepared via the martensitic phase transformation. Mater. Lett. 2019, 255, 126507. [Google Scholar] [CrossRef]
- Wu, H.C.; Kumar, A.; Wang, J.; Bi, X.F.; Tomé, C.N.; Zhang, Z.; Mao, S.X. Rolling-induced Face Centered Cubic Titanium in Hexagonal Close Packed Titanium at Room Temperature. Sci. Rep. 2016, 6, 24370. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Williams, R.E.A.; Wang, D.; Shi, R.; Nag, S.; Kami, P.; Sosa, J.M.; Banerjee, R.; Wang, Y.; Fraser, H.L. Role of ω phase in the formation of extremely refined intragranular α precipitates in metastable β-titanium alloys. Acta Mater. 2016, 103, 850–858. [Google Scholar] [CrossRef]
- Wen, J.; Allain, N.; Fleury, E. Determination of orientation relationships between FCC-hydride and HCP-titanium and their correlation with hydrides distribution. J. Alloys Compd. 2020, 817, 153297. [Google Scholar] [CrossRef]
- Conforto, E.; Caillard, D. A fast method for determining favourable orientation relationships and interface planes: Application to titanium–titanium hydrides transformations. Acta Mater. 2007, 55, 785–798. [Google Scholar] [CrossRef]
- Chang, Y.; Zhang, S.; Liebscher, C.H.; Dye, D.; Ponge, D.; Scheu, C.; Dehm, G.; Raabe, D.; Gault, B.; Lu, W. Could face-centered cubic titanium in cold-rolled commercially-pure titanium only be a Ti-hydride? Scr. Mater. 2020, 178, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, R.; Ghosal, P.; Prasad, K.S.; Nandy, T.K.; Ray, K.K. An FCC phase in a metastable β-titanium alloy. Phil. Mag. Lett. 2014, 94, 311–318. [Google Scholar] [CrossRef]
- Manna, I.; Chattopadhyay, P.P.; Nandi, P.; Banhart, F.; Fecht, H.-J. Formation of face-centered-cubic titanium by mechanical attrition. J. Appl. Phys. 2003, 93, 1520–1524. [Google Scholar] [CrossRef]
- Ali, N.; Zhang, L.; Zhou, H.; Zhao, A.; Zhang, C.; Fu, K.; Cheng, J. Effect of soft reduction technique on microstructure and toughness of medium carbon steel. Mater. Today Commun. 2021, 26, 102130. [Google Scholar] [CrossRef]
- Zhao, P.; Chen, B.; Kelleher, J.; Yuan, G.; Guan, B.; Zhang, X.; Tu, S. High-cycle-fatigue induced continuous grain growth in ultrafine-grained titanium. Acta Mater. 2019, 174, 29–42. [Google Scholar] [CrossRef]
- Liu, C.; Li, G.; Gu, H.; Yuan, F.; Han, F.; Ali, M.; Zhang, Y.; Guo, W. Observation of FCC-Zr phase in as-cast Zircaloy-4 alloy. Mater. Lett. 2020, 267, 127551. [Google Scholar] [CrossRef]
- Liu, J.; Yu, H.; Karamched, P.; Hu, J.; He, G.; Goran, D.; Hughes, G.M.; Wilkinson, A.J.; Lozano-Perez, S.; Grovenor, C.R.M. Mechanism of the α-Zr to hexagonal-ZrO transformation and its impact on the corrosion performance of nuclear Zr alloys. Acta Mater. 2019, 179, 328–341. [Google Scholar] [CrossRef]
- Xiao, B.; Xu, L.; Cayron, C.; Xue, J.; Sha, G.; Logé, R. Solute-dislocation interactions and creep-enhanced Cu precipitation in a novel ferritic-martensitic steel. Acta Mater. 2020, 195, 199–208. [Google Scholar] [CrossRef]
- Li, X.L.; Deng, X.T.; Lei, C.S.; Wang, Z.D. New orientation relationship with low interfacial energy in MC/ferrite system observed in Nb-Ti bearing steel during isothermal quenching process. Scr. Mater. 2019, 163, 101–106. [Google Scholar] [CrossRef]
- Rong, Y. Introduction to Analytical Electron Microscopy, 2nd ed.; Higher Education Press: Beijing, China, 2015. [Google Scholar]
- Zhang, M.X.; Kelly, P.M. Edge-to-edge matching and its applications: Part II. Application to Mg–Al, Mg–Y and Mg–Mn alloys. Acta Mater. 2005, 53, 1085–1096. [Google Scholar] [CrossRef]
(HKIL)HCP | (HKL)HCP | (hkl)FCC via Matrix Calculation | (hkl)FCC via TKD |
---|---|---|---|
001) | 01) | [0 0 0.95] | 01) |
() | () | [2.10 0] | () |
[2.09 0.94] | ) | ||
) | [2.09 1.88] | (1) | |
0) | 0) | [1.21 1.21 0] | 0) |
) | [2.42 2.42 2.85] | ) | |
3) | 3] | [1.21 1.21 2.82] | ) |
[201] | [2.42 2.42 0.94] | ) | |
) | ) | [3.30 −0.88 0.94] | (3) |
[4.51 0.32 0] | 0) | ||
00) | 0) | [1.65 −0.44 0] | (3) |
(uvw)FCC | (UVW)HCP by Matrix Calculation | (UVtW)HCP | (UVtW)HCP via TKD |
---|---|---|---|
[10] | [0.70 0] | ] | |
[] | [0 6.29 1.90] | [ | |
[1] | [0.70 0.95] | ] | |
[2 | [ | [ | |
[] | [0 2.10 1.90] | [ | [ |
[10] | [2.42 1.21 0] | [ | [100] |
[3 | [2.42 | [2.61 | ] |
[1] | [2.42 1.21 0.95] | [ | [10] |
[1] | [2.42 1.21 1.9] | [ | [2 |
[1] | [2.42 1.21 2.84] | [ | [10] |
[10] | [ | [0.44 0] | ] |
01] | 0 0.95] | 0 0.95] | 001] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, F.; Zhu, Q.; Shen, J.; Lu, Z.; Zhang, L.; Ali, N.; Zhou, H.; Liu, X. Study on Phase Transformation Orientation Relationship of HCP-FCC during Rolling of High Purity Titanium. Crystals 2021, 11, 1164. https://doi.org/10.3390/cryst11101164
Bai F, Zhu Q, Shen J, Lu Z, Zhang L, Ali N, Zhou H, Liu X. Study on Phase Transformation Orientation Relationship of HCP-FCC during Rolling of High Purity Titanium. Crystals. 2021; 11(10):1164. https://doi.org/10.3390/cryst11101164
Chicago/Turabian StyleBai, Fengmei, Qingliang Zhu, Jiaming Shen, Zhihan Lu, Liqiang Zhang, Naqash Ali, Hongwei Zhou, and Xianghua Liu. 2021. "Study on Phase Transformation Orientation Relationship of HCP-FCC during Rolling of High Purity Titanium" Crystals 11, no. 10: 1164. https://doi.org/10.3390/cryst11101164
APA StyleBai, F., Zhu, Q., Shen, J., Lu, Z., Zhang, L., Ali, N., Zhou, H., & Liu, X. (2021). Study on Phase Transformation Orientation Relationship of HCP-FCC during Rolling of High Purity Titanium. Crystals, 11(10), 1164. https://doi.org/10.3390/cryst11101164