NPG–TRIS Thermal Storage System. Quantification of the Limiting Processes: Sublimation and Water’s Adsorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparations
2.2. Equipments
2.3. Methods
2.3.1. Study of the Water Content
2.3.2. Sublimation Measurements
3. Results
3.1. Study of the Water Content in the Samples
3.2. Thermal Analysis of the Pure Components and of the Peritectic Compound
3.3. The Sublimation of NPG and Its Effect on NPG0.515TRIS0.485
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature and Abbreviations
NPG | 2,2-dimetyl-1,3-propanodiol |
TRIS | 2-Amino-2-(hydroxymethyl |
PCM | Phase Change Materials |
SAr | Sample prepared in a glovebox with argon atmosphere and levels of oxygen and humidity below 0.1 ppm |
Slab | Sample prepared and manipulated in ambient conditions |
SLab+T | Sample prepared and manipulated in ambient conditions which was heated |
DSC | Differential Scanning Calorimetry |
TGA | Thermogravimetric analysis |
TG | Thermogravimetric |
HT-aluminum pans | High Temperature aluminum pans |
ΔHsub | Sublimation Enthalpy |
ΔHFusion | Fusion Enthalpy |
dm/dt | rate of mass loss |
Cp | Molar Heat Capacity at constant pressure |
MDSC | Modulated Differential Scanning Calorimetry |
TPT | Temperature of Phase Transition |
ΔHPT | Enthalpy of Phase Transition |
Tm | Melting Temperature |
Ti | Initial Temperature |
TF | Final Temperature |
%Δmexperimental | Experimental mass loss percentage |
%Δmtheorical | Theoretical mass loss percentage |
FCC | Face Centered Cubic |
BCC | Body Centered Cubic |
XTRIS; XNPG | Molar fraction of TRIS or NPG |
References
- Saito, A. Recent advances in research on cold thermal energy storage. Int. J. Refrig. 2002, 25, 177–189. [Google Scholar] [CrossRef]
- Gao, W.; Lin, W.; Liu, T.; Xia, C. An experimental study on the heat storage performances of polyalcohols npg, tam, pe, and ampd and their mixtures as solid-solid phase-change materials for solar energy applications. Int. J. Green Energy 2007, 4, 301–311. [Google Scholar] [CrossRef]
- Chandra, D.; Fitzpatrick, J.J.; Jorgensen, G. Structure and Lattice Parameters of Pentaerythritol Above and Below Its Phase-Transition Temperature. Adv. X-Ray Anal. 1984, 28, 353–360. [Google Scholar] [CrossRef]
- Sarier, N.; Onder, E. Organic phase change materials and their textile applications: An overview. Thermochim. Acta 2012, 540, 7–60. [Google Scholar] [CrossRef]
- Hu, S.; Liu, B.; Li, Z.; Zhou, J.; Sun, Z. Identifying optimal dopants for Sb2Te3 phase-change material by high-throughput ab initio calculations with experiments. Comput. Mater. Sci. 2019, 165, 51–58. [Google Scholar] [CrossRef]
- Pauken, M.; Emis, N.; Watkins, B. Thermal energy storage technology developments. AIP Conf. Proc. 2007, 880, 412–420. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Castell, A.; Barreneche, C.; De Gracia, A.; Fernández, A.I. Materials used as PCM in thermal energy storage in buildings: A review. Renew. Sustain. Energy Rev. 2011, 15, 1675–1695. [Google Scholar] [CrossRef]
- Yan, Q.; Liang, C. The thermal storage performance of monobasic, binary and triatomic polyalcohols systems. Sol. Energy 2008, 82, 656–662. [Google Scholar] [CrossRef]
- Lacroix, M. Study of the heat transfer behavior of a latent heat thermal energy storage unit with a finned tube. Int. J. Heat Mass Transf. 1993, 36, 2083–2092. [Google Scholar] [CrossRef]
- Feldman, D.; Shapiro, M.M.; Banu, D. Organic phase change materials for thermal energy storage. Sol. Energy Mater. 1986, 13, 1–10. [Google Scholar] [CrossRef]
- Abhat, A. Low temperature latent heat thermal energy storage: Heat storage materials. Sol. Energy 1983, 30, 313–332. [Google Scholar] [CrossRef]
- Chellappa, R.; Russell, R.; Chandra, D. Thermodynamic modeling of the C(CH2OH)4–(NH2)(CH3)C(CH2OH)2 binary system. Calphad 2004, 28, 3–8. [Google Scholar] [CrossRef]
- Chandra, D.; Chellappa, R.; Chien, W.M. Thermodynamic assessment of binary solid-state thermal storage materials. J. Phys. Chem. Solids 2005, 66, 235–240. [Google Scholar] [CrossRef]
- Mishra, A.; Talekar, A.; Shi, R.; Chandra, D. Thermodynamic assessment of orientationally disordered organic molecular crystals: Ternary system pentaeryth, itol-neopentylglycol-2-amino-2methyl-1,3, propanediol (PE-NPG-AMPL). Calphad Comput. Coupling Phase Diagr. Thermochem. 2014, 46, 108–117. [Google Scholar] [CrossRef]
- Zalba, B.; Marín, J.M.; Cabeza, L.F.; Mehling, H. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl. Therm. Eng. 2003, 23, 251–283. [Google Scholar] [CrossRef]
- Khalifa, A.J.N.; Suffer, K.H.; Mahmoud, M.S. A storage domestic solar hot water system with a back layer of phase change material. Exp. Therm. Fluid Sci. 2013, 44, 174–181. [Google Scholar] [CrossRef]
- Zhao, J.; Lv, P.; Rao, Z. Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack. Exp. Therm. Fluid Sci. 2017, 82, 182–188. [Google Scholar] [CrossRef]
- Wang, C.; Li, Q.; Wang, L.; Lan, X. Phase transition of neopentyl glycol in nanopores for thermal energy storage. Thermochim. Acta 2016, 632, 10–17. [Google Scholar] [CrossRef]
- Farid, M.M.; Khudhair, A.M.; Razack, S.A.K.; Al-Hallaj, S. A review on phase change energy storage: Materials and applications. Energy Convers. Manag. 2004, 5, 1597–1615. [Google Scholar] [CrossRef]
- Serrano, A.; Dauvergne, J.L.; Doppiu, S.; Del Barrio, E.P. Neopentyl glycol as active supporting media in shape-stabilized PCMs. Materials 2019, 12, 3169. [Google Scholar] [CrossRef] [Green Version]
- Hasnain, S.M. Review on sustainable thermal energy storage technologies, part I: Heat storage materials and techniques. Energy Convers. Manag. 1998, 39, 1127–1138. [Google Scholar] [CrossRef]
- Jegadheeswaran, S.; Pohekar, S.D.; Kousksou, T. Exergy based performance evaluation of latent heat thermal storage system: A review. Renew. Sustain. Energy Rev. 2010, 14, 2580–2595. [Google Scholar] [CrossRef]
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, C.Y.; Tian, Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl. Energy 2012, 92, 593–605. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Fang, G. Preparation and heat transfer characteristics of microencapsulated phase change material slurry: A review. Renew. Sustain. Energy Rev. 2011, 15, 4624–4632. [Google Scholar] [CrossRef]
- Delgado, M.; Lázaro, A.; Mazo, J.; Zalba, B. Review on phase change material emulsions and microencapsulated phase change material slurries: Materials, heat transfer studies and applications. Renew. Sustain. Energy Rev. 2012, 16, 253–273. [Google Scholar] [CrossRef]
- Tyagi, V.V.; Kaushik, S.C.; Tyagi, S.K.; Akiyama, T. Development of phase change materials based microencapsulated technology for buildings: A review. Renew. Sustain. Energy Rev. 2011, 15, 1373–1391. [Google Scholar] [CrossRef]
- Murrill, E.; Breed, L. Solid-solid phase transitions determined by differential scanning calorimetry. Part I. Tetrahedral substances. Thermochim. Acta 1970, 1, 239–246. [Google Scholar] [CrossRef]
- Divi, S.; Chellappa, R.; Chandra, D. Heat capacity measurement of organic thermal energy storage materials. J. Chem. Thermodyn. 2006, 38, 1312–1326. [Google Scholar] [CrossRef]
- Wang, X.; Lu, E.; Lin, W.; Liu, T.; Shi, Z.; Tang, R.; Wang, C. Heat storage performance of the binary systems neopentyl glycol/pentaerythritol and neopentyl glycol/trihydroxy methyl-aminomethane as solid-solid phase change materials. Energy Convers. Manag. 2000, 41, 129–134. [Google Scholar] [CrossRef]
- Chandra, D.; Chien, W.M.; Gandikotta, V.; Lindle, D.W. Heat Capacities of “Plastic Crystal” Solid State Thermal Energy Storage Materials. Z. Fur Phys. Chem. 2002, 216, 1433. [Google Scholar] [CrossRef]
- Suga, H. Calorimetric studies of some energy-related materials. Thermochim. Acta 1999, 328, 9–17. [Google Scholar] [CrossRef]
- Ludwig, A.; Mogeritsch, J.P.; Pfeifer, T. In-situ observation of coupled peritectic growth in a binary organic model alloy. Acta Mater. 2017, 126, 329–335. [Google Scholar] [CrossRef]
- Ludwig, A.; Mogeritsch, J. Compact seaweed growth of peritectic phase on confined, flat properitectic dendrites. J. Cryst. Growth 2016, 455, 99–104. [Google Scholar] [CrossRef]
- Mogeritsch, J.P.; Abdi, M.; Ludwig, A. Investigation of peritectic solidification morphologies by using the binary organic model system TRIS-NPG. Materials 2020, 13, 966. [Google Scholar] [CrossRef] [Green Version]
- Barrio, M.; López, D.O.; Tamarit, J.L.; Negrier, P.; Haget, Y. Degree of miscibility between non-isomorphous plastic phases: Binary system NPG (neopentyl glycol)-TRIS[tris(hydroxymethyl)aminomethane]. J. Mat. Chem. 1995, 5, 431–439. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 90th ed.; CD-ROM Version 2010; CRC Press: Boca Raton, FL, USA, 2009; ISBN 9781420090840. [Google Scholar]
- Langmuir, I. The vapor pressure of metallic tungsten. Phys. Rev. 1913, 2, 329–342. [Google Scholar] [CrossRef]
- Price, D.M. A fit of the vapours. Thermochim. Acta 2015, 622, 44–50. [Google Scholar] [CrossRef]
- Flynn, J.H.; Dickens, B. Steady-state parameter-jump methods and relaxation methods in thermogravimetry. Thermochim. Acta 1976, 15, 1–16. [Google Scholar] [CrossRef]
- Price, D.M. Vapor pressure determination by thermogravimetry. Thermochim. Acta 2001, 367–368, 253–262. [Google Scholar] [CrossRef]
- De Kruif, C.G.; Blok, J.G. The vapour pressure of benzoic acid. J. Chem. Thermodyn. 1982, 14, 201–206. [Google Scholar] [CrossRef]
- Murata, S.; Sakiyama, M.; Seki, S. Enthalpy of sublimation of benzoic acid and dimerization in the vapor phase in the temperature range from 320 to 370 K. J. Chem. Thermodyn. 1982, 14, 723–731. [Google Scholar] [CrossRef]
- Santos-Moreno, S.; Doppiu, S.; Lopez, G.A.; Marinova, N.; Serrano, Á.; Silveira, E.; del Barrio, E.P. Study of the phase transitions in the binary system NPG-TRIS for thermal energy storage applications. Materials 2020, 13, 1162. [Google Scholar] [CrossRef] [Green Version]
- Mogeritsch, J.P.; Ludwig, A.; Eck, S.; Grasser, M.; McKay, B.J. Thermal stability of a binary non-faceted/non-faceted peritectic organic alloy at elevated temperatures. Scr. Mater. 2009, 60, 882–885. [Google Scholar] [CrossRef]
- Barrio, M.; López, D.O.; Tamarit, J.L.; Negrier, P.; Haget, Y. Molecular interactions and packing in molecular alloys between nonisomorphous plastic phases. J. Solid State Chem. 1996, 124, 29–38. [Google Scholar] [CrossRef]
- Strauss, R.; Braun, S.; Dou, S.Q.; Fuess, H.; Weiss, A. Phase diagram of the orientationally order-disorder binary system 2,2-dimethyl-1,3-propanediol/2,2-dimethyl-1,3-diaminopropane, [(CH3)2C(CH2OH)2]x [(CH3)2C(CH2NH2)2]1-x. A thermodynamic, X-ray, and 1H-NMR study. Z. Fur Naturforsch. Sect. A J. Phys. Sci. 1996, 51, 871–881. [Google Scholar] [CrossRef]
- Eilerman, D.; Rudman, R. Polymorphism of crystalline poly(hydroxymethyl) compounds. III. The structures of crystalline and plastic tris(hydroxymethyl)aminomethane. J. Chem. Phys. 1980, 72, 5656. [Google Scholar] [CrossRef]
- Witusiewicz, V.T.; Sturz, L.; Hecht, U.; Rex, S. Thermodynamic description and unidirectional solidification of eutectic organic alloys: II. (CH3)2C(CH2OH)2–(NH2)(CH3)C(CH2OH)2 system. Acta Mater. 2004, 52, 5071–5081. [Google Scholar] [CrossRef]
- Shi, R. Applications of CALPHAD (CALculation of PHAse diagram) modeling in organic orientationally disordered phase change materials for thermal energy storage. Thermochim. Acta 2020, 683, 178461. [Google Scholar] [CrossRef]
- Doshi, N.; Furman, M.; Rudman, R. The formation of the plastic crystal phase in several pentaerythritol derivatives. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1973, 29, 143–144. [Google Scholar] [CrossRef] [Green Version]
- Barrio, M.; Font, J.; López, D.O.; Muntasell, J.; Tamarit, J.L.; Negrier, P.; Chanh, N.B.; Haget, Y. Miscibility and molecular interactions in plastic phases: Binary system pentaglycerin/tris(hydroxymethyl)aminomethane. J. Phys. Chem. Solids 1993, 54, 171–181. [Google Scholar] [CrossRef]
- López, D.O.; Van Braak, J.; Tamarit, J.L.L.; Oonk, H.A.J. Molecular mixed crystals of neopentane derivatives. A comparative analysis of three binary systems showing crossed isodimorphism. Calphad 1995, 19, 37–47. [Google Scholar] [CrossRef]
- Benson, D.K.; Burrows, R.W.; Webb, J.D. Solid state phase transitions in pentaerythritol and related polyhydric alcohols. Sol. Energy Mater. 1986, 13, 133–152. [Google Scholar] [CrossRef]
- Barrio, M.; Font, J.; López, D.; Muntasell, J.; Tamarit, J.L.; Chanh, N.B.; Haget, Y. Binary system neopentylglycol/pentaglycerin. J. Chim. Phys. 1990, 87, 1835–1851. [Google Scholar] [CrossRef]
- Font, J.; Muntasell, J. Simultaneous measurements of enthalpies of sublimation and vapour pressures. Application to the polyols derived from neopentane. Thermochim. Acta 1994, 246, 57–64. [Google Scholar] [CrossRef]
Compound | Enthalpy Change Related Adsorbed Water (J/g) | Figures in the Article Connected to Enthalpy Changes |
---|---|---|
Distilled H2O | 334.20 | Figure S2 |
NPG-adsorbed water | 1.07 | Figure 2 |
SLab-adsorbed water | 4.20 × 10−3 | Figure 1 |
Compound | Low Temperature Phase | TPT (K) | ΔHPT (kJ/mol) | High Temperature Phase | Tm (K) | ΔHF (kJ/mol) | Ref. |
---|---|---|---|---|---|---|---|
NPG | Monoclinic | 315.0 | 13.6 | FCC | 399.0 | 4.6 | [13] |
315.0 | 12.1 | 403.2 | 4.4 | [49] | |||
314.6 | 12.8 | 401.3 | 4.4 | [36] | |||
313.8 | 13.0 | 402.4 | 4.7 | [50] | |||
315.2 | 13.0 | 402.2 | 3.9 | our study | |||
TRIS | Orthorhombic | 408.0 | 32.7 | BCC | 445.0 | 3.3. | [13] |
407.3 | 32.9 | 446.0 | 3.0 | [51] | |||
406.8 | 34.0 | 442.7 | 3.7 | [52] | |||
407.2 | 34.50 | 445.4 | 3.4 | [50] | |||
411.9 | 33.2 | 443.9 | 3.3 | our study |
SLab | SAr | ||||
---|---|---|---|---|---|
Peak | Temperature(K) | ΔH (J/g) | Temperature(K) | ΔH (J/g) | Assignation |
1 | 314.6 | 60.9 | 314.3 | 57.4 | Eutectoid temperature 1; [M] + [O] → [CF] + [O] |
2 | 391.2 | 102.1 | 393.2 | 106.6 | Eutectoid temperature 2; [CF] + [O] → [CF] + [CI] |
3 | 411.8 | 24.2 | 413.7 | 26.1 | Peritectic invariant (melting) [CF] + [CI] → [L] + [CI] |
4 | 410.0 | 30.4 | 407.5 | 28.9 | Peritectic invariant (solidification); [L] + [CI] → [CF] + [CI] |
5* | 314.0 | 98.1 | 309.7 | 94.1 | Recrystallization process, solid-solid transformation |
Sample | Step | Ti(K) | TF(K) | %Δmexperimental | %Δmtheorical | Assignation |
---|---|---|---|---|---|---|
SLab | 1 | 308 | 368 | 50.3 | 51.5 | Sublimation of NPG |
SLab+T | 1 | 308 | 378 | 52.0 | 51.5 | Sublimation of NPG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De La Pinta, N.; Santos-Moreno, S.; Doppiu, S.; Igartua, J.M.; Palomo del Barrio, E.; López, G.A. NPG–TRIS Thermal Storage System. Quantification of the Limiting Processes: Sublimation and Water’s Adsorption. Crystals 2021, 11, 1200. https://doi.org/10.3390/cryst11101200
De La Pinta N, Santos-Moreno S, Doppiu S, Igartua JM, Palomo del Barrio E, López GA. NPG–TRIS Thermal Storage System. Quantification of the Limiting Processes: Sublimation and Water’s Adsorption. Crystals. 2021; 11(10):1200. https://doi.org/10.3390/cryst11101200
Chicago/Turabian StyleDe La Pinta, Noelia, Sergio Santos-Moreno, Stephania Doppiu, Josu M. Igartua, Elena Palomo del Barrio, and Gabriel A. López. 2021. "NPG–TRIS Thermal Storage System. Quantification of the Limiting Processes: Sublimation and Water’s Adsorption" Crystals 11, no. 10: 1200. https://doi.org/10.3390/cryst11101200
APA StyleDe La Pinta, N., Santos-Moreno, S., Doppiu, S., Igartua, J. M., Palomo del Barrio, E., & López, G. A. (2021). NPG–TRIS Thermal Storage System. Quantification of the Limiting Processes: Sublimation and Water’s Adsorption. Crystals, 11(10), 1200. https://doi.org/10.3390/cryst11101200