Molecular Dynamics and Kinetics of Isothermal Cold Crystallization in the Chiral Smectogenic 3F7FPhH6 Glassformer
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Phase Sequence
3.2. Molecular Dynamics
3.3. Kinetics of Cold Crystallization
3.4. Comparison with the 3F7HPhF6 and 3F7HPhH7 Glassformers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piecek, W.; Raszewski, Z.; Perkowski, P.; Przedmojski, J.; Kędzierski, J.; Drzewiński, W.; Dąbrowski, R. Apparent Tilt Angle and Structural Investigations of the Fluorinated Antiferroelectric Liquid Crystal Material for Display Application. Ferroelectrics 2004, 310, 125–129. [Google Scholar] [CrossRef]
- Stipetic, A.I.; Goodby, W.; Hird, M.; Raoul, Y.M.; Gleeson, H.F. High tilt antiferroelectric esters bearing a perfluorobutanoyloxy terminal chain: The influence of lateral fluoro substituents on mesomorphic behaviour, tilt angle, and spontaneous polarization. Liq. Cryst. 2006, 33, 819–828. [Google Scholar] [CrossRef]
- Sokół, E.; Drzewiński, W.; Dziaduszek, J.; Dąbrowski, R.; Bennis, N.; Otón, J. The Synthesis and Properties of Novel Partially Fluorinated Ethers with High Tilted Anticlinic Phase. Ferroelectrics 2006, 343, 41–48. [Google Scholar] [CrossRef]
- Żurowska, M.; Dąbrowski, R.; Dziaduszek, J.; Czupryński, K.; Skrzypek, K.; Filipowicz, M. Synthesis and Mesomorphic Properties of Chiral Esters Comprising Partially Fluorinated Alkoxyalkoxy Terminal Chains and a 1-methylheptyl Chiral Moiety. Mol. Cryst. Liq. Cryst. 2008, 495, 145–157. [Google Scholar] [CrossRef]
- Żurowska, M.; Dąbrowski, R.; Dziaduszek, K.; Garbat, K.; Filipowicz, M.; Tykarska, M.; Rejmer, W.; Czupryński, K.; Spadło, A.; Bennis, N.; et al. Influence of alkoxy chain length and fluorosubstitution on mesogenic and spectral properties of high tilted antiferroelectric esters. J. Mater. Chem. 2011, 21, 2144–2153. [Google Scholar] [CrossRef]
- Milewska, K.; Drzewiński, W.; Czerwiński, M.; Dąbrowski, R. Design, synthesis and mesomorphic properties of chiral benzoates and fluorobenzoates with direct SmCA*-Iso phase transition. Liq. Cryst. 2015, 42, 1601–1611. [Google Scholar] [CrossRef]
- Żurowska, M.; Filipowicz, M.; Czerwiński, M.; Szala, M. Synthesis and properties of ferro- and antiferroelectric esters with a chiral centre based on (S)-(+)-3-octanol. Liq. Cryst. 2019, 46, 299–308. [Google Scholar] [CrossRef]
- Urbańska, M.; Perkowski, P.; Szala, M. Synthesis and properties of antiferroelectric and/or ferroelectric compounds with the –CH2O group close to chirality centre. Liq. Cryst. 2019, 46, 2245–2255. [Google Scholar] [CrossRef]
- Fukuda, A.; Takanishi, Y.; Isozaki, T.; Ishikawa, K.; Takezoe, H. Antiferroelectric Chiral Smectic Liquid Crystals. J. Mater. Chem. 1994, 4, 997–1016. [Google Scholar] [CrossRef]
- D’havé, K.; Rudquist, P.; Lagerwall, S.T.; Pauwels, H.; Drzewiński, W.; Dąbrowski, R. Solution of the dark state problem in antiferroelectric liquid crystal displays. Appl. Phys. Lett. 2000, 76, 3528–3530. [Google Scholar] [CrossRef]
- Lagerwall, S.; Dahlgren, A.; Jägemalm, P.; Rudquist, P.; D’havé, K.; Pauwels, H.; Dąbrowski, R.; Drzewiński, W. Unique Electro-Optical Properties of Liquid Crystals Designed for Molecular Optics. Adv. Funct. Mater. 2001, 11, 87–94. [Google Scholar] [CrossRef]
- Deptuch, A.; Jaworska-Gołąb, T.; Marzec, M.; Pociecha, D.; Fitas, J.; Żurowska, M.; Tykarska, M.; Hooper, J. Mesomorphic phase transitions of 3F7HPhF studied by complementary methods. Phase. Trans. 2018, 91, 186–198. [Google Scholar] [CrossRef]
- Deptuch, A.; Jaworska-Gołąb, T.; Marzec, M.; Urbańska, M.; Tykarska, M. Cold crystallization from chiral smectic phase. Phase Trans. 2019, 92, 126–134. [Google Scholar] [CrossRef]
- Deptuch, A.; Marzec, M.; Jaworska-Gołąb, T.; Dziurka, M.; Hooper, J.; Srebro-Hooper, M.; Fryń, P.; Fitas, J.; Urbańska, M.; Tykarska, M. Influence of carbon chain length on physical properties of 3FmHPhF homologues. Liq. Cryst. 2019, 46, 2201–2212. [Google Scholar] [CrossRef]
- Kolek, Ł.; Jasiurkowska-Delaporte, M.; Massalska-Arodź, M.; Szaj, W.; Rozwadowski, T. Mesomorphic and dynamic properties of 3F5BFBiHex antiferroelectric liquid crystal as reflected by polarized optical microscopy, differential scanning calorimetry and broadband dielectric spectroscopy. J. Mol. Liq. 2020, 320, 114338. [Google Scholar] [CrossRef]
- Drzewicz, A.; Juszyńska-Gałązka, E.; Zając, W.; Piwowarczyk, M.; Drzewiński, W. Non-isothermal and isothermal cold crystallization of glass-forming chiral smectic liquid crystal (S)-4′-(1-methyloctyloxycarbonyl) biphenyl-4-yl 4-[7-(2,2,3,3,4,4,4-heptafluorobutoxy) heptyl-1-oxy]-benzoate. J. Mol. Liq. 2020, 319, 114153. [Google Scholar] [CrossRef]
- Drzewicz, A.; Juszyńska-Gałązka, E.; Zając, W.; Kula, P. Vibrational Dynamics of a Chiral Smectic Liquid Crystal Undergoing Vitrification and Cold Crystallization. Crystals 2020, 10, 655. [Google Scholar] [CrossRef]
- Drzewicz, A.; Jasiurkowska-Delaporte, M.; Juszyńska-Gałązka, E.; Zając, W.; Kula, P. On the relaxation dynamics of a double glass-forming antiferroelectric liquid crystal. Phys. Chem. Chem. Phys. 2021, 23, 8673–8688. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Usui, T.; Hanna, J. Synthesis of a novel smectic liquid crystalline glass and characterization of its charge carrier transport properties. J. Mater. Chem. 2011, 21, 8045–8051. [Google Scholar] [CrossRef]
- Teerakapibal, R.; Huang, C.; Gujral, A.; Ediger, M.D.; Yu, L. Organic Glasses with Tunable Liquid-Crystalline Order. Phys. Rev. Lett. 2018, 120, 055502. [Google Scholar] [CrossRef]
- Elschner, R.; Macdonald, R.; Eichler, H.J.; Hess, S.; Sonnet, A.M. Molecular reorientation of a nematic glass by laser-induced heat flow. Phys. Rev. E 1999, 60, 1792–1798. [Google Scholar] [CrossRef]
- Shi, H.; Chen, S.H. Novel glass-forming liquid crystals. III Helical sense and twisting power in chiral nematic systems. Liq. Cryst. 1995, 19, 849–861. [Google Scholar] [CrossRef]
- Chen, H.M.P.; Katsis, D.; Chen, S.H. Deterministic Synthesis and Optical Properties of Glassy Chiral-Nematic Liquid Crystals. Chem. Mater. 2003, 15, 2534–2542. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2019. [Google Scholar]
- Stewart, J.J.P. Optimization of parameters for semiempirical methods VI: More modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Model. 2013, 19, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012, 9, 671–675. [Google Scholar] [CrossRef]
- The FracLac Guide. Available online: https://imagej.nih.gov/ij/plugins/fraclac/FLHelp/BoxCounting.htm (accessed on 20 March 2021).
- Falconer, K. Fractal Geometry: Mathematic Foundations and Applications; John Wiley & Sons: Chichester, UK, USA, 2003. [Google Scholar]
- Lalik, S.; Deptuch, A.; Fryń, P.; Jaworska-Gołąb, T.; Dardas, D.; Pociecha, D.; Urbańska, M.; Tykarska, M.; Marzec, M. Systematic study of the chiral smectic phases of a fluorinated compound. Liq. Cryst. 2019, 46, 2256–2268. [Google Scholar] [CrossRef]
- Hirst, L.S.; Watson, S.J.; Gleeson, H.F.; Cluzeau, P.; Barois, P.; Pindak, R.; Pitney, J.; Cady, A.; Johnson, P.M.; Huang, C.C.; et al. Interlayer structures of the chiral smectic liquid crystal phases revealed by resonant x-ray scattering. Phys. Rev. E 2002, 65, 041705. [Google Scholar] [CrossRef]
- Labeeb, A.; Gleeson, H.F.; Hegmann, T. Polymer stabilization of the smectic C-alpha* liquid crystal phase—Over tenfold thermal stabilization by confining networks of photo-polymerized reactive mesogens. Appl. Phys. Lett. 2015, 107, 232903. [Google Scholar] [CrossRef]
- Buivydas, M.; Gouda, F.; Andersson, G.; Lagerwall, S.T.; Stebler, B.; Bomelburg, J.; Heppke, G.; Gestblom, B. Collective and non-collective excitations in antiferroelectric and ferrielectric liquid crystals studied by dielectric relaxation spectroscopy and electro-optic measurements. Liq. Cryst. 1997, 23, 723–739. [Google Scholar] [CrossRef]
- Marino, L.; Tone, C.M.; Ionescu, A.; Żurowska, M.; Czerwiński, M. Evidence of both unusual dielectric mode at low frequencies and the co-existence of antiferroelectric, ferroelectric and paraelectric phases in a novel antiferroelectric liquid crystals mixture. J. Mol. Liq. 2017, 247, 43–56. [Google Scholar] [CrossRef]
- Cole, K.S.; Cole, R.H. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. J. Chem. Phys. 1941, 9, 341–351. [Google Scholar] [CrossRef]
- Havriliak, S.; Negami, S. A complex plane analysis of α-dispersions in some polymer systems. J. Polym. Sci. Part C Polymer Symposia. 1966, 14, 99–117. [Google Scholar] [CrossRef]
- Haase, W.; Wróbel, S. (Eds.) Relaxation Phenomena: Liquid Crystals, Magnetic Systems, Polymers, High-Tc Superconductors, Metallic Glasses; Springer-Verlag: Berlin/Heidelberg, Germany, 2003. [Google Scholar] [CrossRef]
- Panarin, Y.P.; Kalinovskaya, O.; Vij, J.K. The investigation of the relaxation processes in antiferroelectric liquid crystals by broad band dielectric and electro-optic spectroscopy. Liq. Cryst. 1998, 25, 241–252. [Google Scholar] [CrossRef]
- Perkowski, P.; Ogrodnik, K.; Piecek, W.; Żurowska, M.; Raszewski, Z.; Dąbrowski, R.; Jaroszewicz, L. Influence of the bias field on dielectric properties of the SmCA* in the vicinity of the SmC*-SmCA* phase transition. Liq. Cryst. 2011, 38, 1159–1167. [Google Scholar] [CrossRef]
- Donth, E. The Glass Transition: Dynamics in Liquids and Disordered Materials; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar] [CrossRef]
- Böhmer, R.; Ngai, K.L.; Angell, C.A.; Plazek, D.J. Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 1993, 99, 4201–4209. [Google Scholar] [CrossRef]
- Jasiurkowska-Delaporte, M.; Juszyńska, E.; Kolek, Ł.; Krawczyk, J.; Massalska-Arodź, M.; Osiecka, N.; Rozwadowski, T. Signatures of glass transition in partially ordered phases. Liq. Cryst. 2013, 40, 1436–1442. [Google Scholar] [CrossRef]
- Johari, G.P.; Goldstein, M. Viscous Liquids and the Glass Transition. II. Secondary Relaxations in Glasses of Rigid Molecules. J. Chem. Phys. 1970, 53, 2372–2388. [Google Scholar] [CrossRef]
- Ngai, K.L.; Paluch, M. Classification of secondary relaxation in glass-formers based on dynamic properties. J. Chem. Phys. 2004, 120, 857–873. [Google Scholar] [CrossRef] [PubMed]
- Gonon, P.; Sylvestre, A. Dielectric properties of fluorocarbon thin films deposited by radio frequency sputtering of polytetrafluoroethylene. J. Appl. Phys. 2002, 92, 4584–4589. [Google Scholar] [CrossRef]
- Uehara, H.; Hanakai, Y.; Hatano, J.; Saito, S.; Murashiro, K. Dielectric Relaxation Modes in the Phases of Antiferroelectric Liquid Crystals. Jpn. J. Appl. Phys. 1995, 34, 5424–5428. [Google Scholar] [CrossRef]
- Novotna, V.; Glogarova, M.; Bubnov, A.M.; Sverenyak, H. Thickness dependent low frequency relaxations in ferroelectric liquid crystals with different temperature dependence of the helix pitch. Liq. Cryst. 1997, 23, 511–518. [Google Scholar] [CrossRef]
- Kumari, S.; Das, I.M.L.; Dąbrowski, R. Effect of DC bias and cell thickness on the characteristic dielectric parameters of the relaxation modes of an antiferroelectric liquid crystal. J. Mol. Liq. 2011, 158, 1–6. [Google Scholar] [CrossRef]
- Panarin, Y.P.; Xu, H.; Lughadha, S.T.M.; Vij, J.K. Dielectric Response of Ferroelectric Liquid Crystal Cells. Jpn. J. Appl. Phys. 1994, 33, 2648–2650. [Google Scholar] [CrossRef]
- Roy, S.S.; Majumder, T.A.P.; Roy, S.K. Soft Mode Dielectric Relaxation Under the Influence of Bias Electric Field of a Ferroelectric Liquid Crystal Mixture. Mol. Cryst. Liq. Cryst. 1997, 304, 315–320. [Google Scholar] [CrossRef]
- Carlsson, T.; Žekš, B.; Filipič, C.; Levstik, A. Theoretical model of the frequency and temperature dependence of the complex dielectric constant of ferroelectric liquid crystals near the smectic-C*–smectic-A phase transition. Phys. Rev. A 1990, 42, 877–889. [Google Scholar] [CrossRef] [PubMed]
- Prasad, N.S.; Varma, K.B.R. Crystallization Kinetics of the LiBO2–Nb2O5 Glass Using Differential Thermal Analysis. J. Am. Ceram. Soc. 2005, 88, 357–361. [Google Scholar] [CrossRef]
- Massalska-Arodź, M.; Williams, G.; Thomas, D.K.; Jones, W.J.; Dąbrowski, R. Molecular Dynamics and Crystallization Behavior of Chiral Isooctyloxycyanobiphenyl as Studied by Dielectric Relaxation Spectroscopy. J. Phys. Chem. B 1999, 103, 4197–4205. [Google Scholar] [CrossRef]
- Fukao, K.; Miyamoto, Y. Relaxation behavior of α-process of poly(ethylene terephthalate) during crystallization process. J. Non Cryst. Sol. 1997, 212, 208–214. [Google Scholar] [CrossRef]
- Avrami, M. Kinetics of Phase Change. I General Theory. J. Chem. Phys. 1939, 7, 1103–1112. [Google Scholar] [CrossRef]
- Avrami, M. Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei. J. Chem. Phys. 1940, 8, 212–224. [Google Scholar] [CrossRef]
- Avramov, I.; Avramova, K.; Rüssel, C. New method to analyze data on overall crystallization kinetics. J. Cryst. Growth. 2005, 285, 394–399. [Google Scholar] [CrossRef]
- Çelikbilek, M.; Ersundu, A.E.; Aydın, S. Crystallization Kinetics of Amorphous Materials. In Advances in Crystallization Processes; Mastai, Y., Ed.; IntechOpen: Rijeka, Croatia, 2012; pp. 127–162. [Google Scholar]
- Massalska-Arodź, M.; Williams, G.; Smith, I.K.; Conolly, C.; Aldridge, G.A.; Dąbrowski, R. Molecular dynamics and crystallization behaviour of isophentyl cyanobiphenyl as studied by dielectric relaxation spectroscopy. J. Chem. Soc. Faraday Trans. 1998, 94, 387–394. [Google Scholar] [CrossRef]
- Deptuch, A.; Jasiurkowska-Delaporte, M.; Zając, W.; Juszyńska-Gałązka, E.; Drzewicz, A.; Urbańska, M. Investigation of crystallization kinetics and its relationship with molecular dynamics for chiral fluorinated glassforming smectogen 3F5HPhH6. Phys. Chem. Chem. Phys. 2021, 23, 19795–19810. [Google Scholar] [CrossRef] [PubMed]
Transition | ||||
---|---|---|---|---|
Cooling | ||||
Iso → | 377.0 | 376.8 | 9.3 | 24.8 |
→ () → | 371.9 | (376.3) 1 371.1 | 2.1 | 5.5 |
→ | – | 369.5 | 1.1 | 2.9 |
→ glass | 233 | – | – | – |
Heating | ||||
glass → | 233 | – | – | – |
→ Cr2 | 275.7 | 280.4 | 3.4 3 | 12.1 3 |
Cr2 → () → Cr1 2 | 287.2 | 292.1 | 10.9 3 | 37.2 3 |
Cr1 → | 301.2 | 303.7 | 2.9 3 | 9.6 3 |
→ | 370.1 | 370.6 | 1.3 | 3.5 |
→ () → | 370.9 | 371.6 | 2.3 | 6.2 |
→ Iso | 375.5 | 376.6 | 9.7 | 25.6 |
273 | 5.8 | 284.5, 299.2 | 291.0, 303.3 | 2.7, 12.6 |
278 | 12.3 | 298.5 | 303.7 | 17.6 |
283 | 14.9 | 298.4, – | 304.2, 310.8 | 18.6, 0.9 |
288 | 13.8 | 299.8 | 305.5 | 17.7 |
293 | 12.6 | 302.6 | 307.7 | 15.7 |
BDS, fitting results of Equation (6) | |||
265 | 0 | 785(8) | 0.94(2) |
268 | 0 | 658(1) | 0.88(1) |
271 | 0 | 549(12) | 1.32(4) |
273 | 0 | 357(5) | 1.20(3) |
DSC, fitting results of Equation (6) | |||
273 | 1291(2) | 2991(2) | 2.31(1) |
278 | 1300(1) | 2440(1) | 2.15(1) |
283 | 786(3) | 2817(3) | 3.58(1) |
288 | 178(5) | 3485(5) | 4.89(1) |
293 | 0 | 6642(1) | 3.58(1) |
DSC, Avramov method | |||
273 | 1209(23) | 3080(23) | 2.13(2) |
278 | 1687(13) | 2034(13) | 1.65(2) |
283 | 1483(19) | 2103(19) | 2.52(3) |
288 | 1613(20) | 2032(20) | 2.65(4) |
293 | 0 | 6652(4) | 3.40(2) |
Compound | 3F7FPhH6 | 3F7HPhF6 | 3F7HPhH7 |
---|---|---|---|
DSC results | |||
Vitrification of the phase | Always upon cooling 1 | Always upon cooling 1 [11] | For cooling rate ≥2 K/min [15] |
Investigated (K) | 273–293 | 233–250 [12] | 261–264 [15] |
(s) | 2200–6650 | 100–2200 2 [12] | 350–750 [15] |
BDS results | |||
(K) | 231 | 223 [11] | 259, 239 [17] |
72 | 102 [11] | 150, 136 [17] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deptuch, A.; Jasiurkowska-Delaporte, M.; Juszyńska-Gałązka, E.; Drzewicz, A.; Zając, W.; Urbańska, M. Molecular Dynamics and Kinetics of Isothermal Cold Crystallization in the Chiral Smectogenic 3F7FPhH6 Glassformer. Crystals 2021, 11, 1487. https://doi.org/10.3390/cryst11121487
Deptuch A, Jasiurkowska-Delaporte M, Juszyńska-Gałązka E, Drzewicz A, Zając W, Urbańska M. Molecular Dynamics and Kinetics of Isothermal Cold Crystallization in the Chiral Smectogenic 3F7FPhH6 Glassformer. Crystals. 2021; 11(12):1487. https://doi.org/10.3390/cryst11121487
Chicago/Turabian StyleDeptuch, Aleksandra, Małgorzata Jasiurkowska-Delaporte, Ewa Juszyńska-Gałązka, Anna Drzewicz, Wojciech Zając, and Magdalena Urbańska. 2021. "Molecular Dynamics and Kinetics of Isothermal Cold Crystallization in the Chiral Smectogenic 3F7FPhH6 Glassformer" Crystals 11, no. 12: 1487. https://doi.org/10.3390/cryst11121487
APA StyleDeptuch, A., Jasiurkowska-Delaporte, M., Juszyńska-Gałązka, E., Drzewicz, A., Zając, W., & Urbańska, M. (2021). Molecular Dynamics and Kinetics of Isothermal Cold Crystallization in the Chiral Smectogenic 3F7FPhH6 Glassformer. Crystals, 11(12), 1487. https://doi.org/10.3390/cryst11121487