Obtaining Biocompatible Porous Composite Material Based on Zinc-Modified Hydroxyapatite and Lactide-Glycolide Copolymer
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Experimental Results and Discussion
3.2. Investigation of Physical and Chemical Properties
3.3. Investigation of the Solubility of Composites
3.4. Assessment of the Effect of Materials on the Viability of Cells of the Immune System
3.5. Evaluation of the Antibacterial Activity of Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suchanek, W.; Yoshimura, M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res. 1998, 13, 94–117. [Google Scholar] [CrossRef]
- Bilezikian, J.P.; Raisz, L.G.; Rodan, G.A. Principles of Bone Biology, 4th ed.; Bilezikian, J.P., Raisz, L.G., Rodan, G.A., Eds.; Academic Press: San Diego, CA, USA, 2002; Volume 1–2. [Google Scholar]
- Von Euw, S.; Wang, Y.; Laurent, G.; Drouet, C.; Babonneau, F.; Nassif, N.; Azaïs, T. Bone mineral: New insights into its chemical composition. Sci. Rep. 2019, 9, 8456. [Google Scholar] [CrossRef] [Green Version]
- LeGeros, R.Z.; Lin, S.; Rohanizadeh, R.; Mijares, D.; LeGeros, J.P. Biphasic calcium phosphate bioceramics: Preparation, properties and applications. J. Mater. Sci. Mater. Med. 2003, 14, 201–209. [Google Scholar] [CrossRef]
- Catauro, M.; Bollino, F.; Papale, F. Investigation on bioactivity, biocompatibility, thermal behavior and antibacterial properties of calcium silicate glass coatings containing Ag. J. Non-Cryst. Sol. 2015, 422, 16–22. [Google Scholar] [CrossRef]
- Lim, P.N.; Chang, L.; Thian, E.S. Development of nanosized silver-substituted apatite for biomedical applications: A review. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1331–1344. [Google Scholar] [CrossRef]
- Singh, B.; Kumar, A.; Kumar, D.S. In vitro biocompatibility and antimicrobial activity of wet chemically prepared Ca10−xAgx(PO4)6(OH)2 (0.0 ≤ x ≤ 0.5) hydroxyapatites. Mater. Sci. Eng. 2011, 31, 1320–1329. [Google Scholar] [CrossRef]
- Barinov, S.M.; Komlev, V.S. Bioceramics in Medicine; Nauka: Moscow, Russia, 2005; 284p. [Google Scholar]
- Cox, S.C.; Jamshidi, P.; Grover, L.M.; Mallick, K.K. Preparation and characterisation of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 35, 106–114. [Google Scholar] [CrossRef] [PubMed]
- DeJong, E.S.; DeBerardino, T.M.; Brooks, D.E.; Nelson, B.J.; Campbell, A.A.; Bottoni, C.R.; Pusateri, A.E.; Walton, R.S.; Guymon, C.H.; McManus, A.T. Antimicrobial efficacy of external fixator pins coated with a lipid stabilized hydroxyapatite/chlorhexidine complex to prevent pin tract infection in a goat model. J. Trauma. 2001, 50, 1008–1014. [Google Scholar] [CrossRef] [Green Version]
- Ciobanu, C.S.; Iconaru, S.L.; Chifiriuc, M.C.; Costescu, A.; Le Coustumer, P.; Predoi, D. Synthesis and antimicrobial activity of silver-doped hydroxyapatite nanoparticles. Biomed. Res. Int. 2013, 2013, 916218. [Google Scholar] [CrossRef] [Green Version]
- Plum, L.M.; Rink, L.; Haase, H. The essential toxin: Impact of zinc on human health. Int. J. Environ. Res. Public Health 2010, 7, 1342–1365. [Google Scholar] [CrossRef] [Green Version]
- Wastney, M.E.; Aamodt, R.L.; Rumble, W.F.; Henkin, R.I. Kinetic analysis of zinc metabolism and its regulation in normal humans. Am. J. Physiol. 1986, 251, R398–R408. [Google Scholar] [CrossRef]
- Fiske, D.N.; McCoy, H.E.; Kitchens, C.S. Zinc-induced sideroblastic anemia: Report of a case, review of the literature, and description of the hematologic syndrome. Am. J. Hematol. 1994, 46, 147–150. [Google Scholar] [CrossRef]
- Prohaska, J.R. Biochemical changes in copper deficiency. J. Nutr. Biochem. 1990, 1, 452–461. [Google Scholar] [CrossRef]
- Sandstead, H.H. Requirements and toxicity of essential trace elements, illustrated by zinc and copper. Am. J. Clin. Nutr. 1995, 61, 621S–624S. [Google Scholar] [CrossRef]
- Beyersmann, D.; Hartwig, A. Carcinogenic metal compounds: Recent insight into molecular and cellular mechanisms. Arch. Toxicol. 2008, 82, 493–512. [Google Scholar] [CrossRef]
- Honscheid, A.; Rink, L.; Haase, H. T-lymphocytes: A target for stimulatory and inhibitory effects of zinc ions. Endocr. Metab. Immune Disord. Drug Targets 2009, 9, 132–144. [Google Scholar] [CrossRef]
- Rink, L.; Gabriel, P. Zinc and the immune system. Proc. Nutr. Soc. 2000, 59, 541–552. [Google Scholar] [CrossRef] [Green Version]
- Delafuente, J.C. Nutrients and immune responses. Rheum. Dis. Clin. N. Am. 1991, 17, 203–212. [Google Scholar] [CrossRef]
- Fraker, P.J.; DePasquale-Jardieu, P.; Zwickl, C.M.; Luecke, R.W. Regeneration of T-cell helper function in zinc-deficient adult mice. Proc. Natl. Acad. Sci. USA 1978, 75, 5660–5664. [Google Scholar] [CrossRef] [Green Version]
- Haase, H.; Rink, L. Functional significance of zinc-related signaling pathways in immune cells. Annu. Rev. Nutr. 2009, 29, 133–152. [Google Scholar] [CrossRef]
- Cummings, J.E.; Kovacic, J.P. The ubiquitous role of zinc in health and disease. J. Vet. Emerg. Crit. Care 2009, 19, 215–240. [Google Scholar] [CrossRef]
- Formigari, A.; Irato, P.; Santon, A. Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: Biochemical and cytochemical aspects. Comp. Biochem. Physiol. Part C 2007, 146, 443–459. [Google Scholar] [CrossRef]
- Haase, H.; Watjen, W.; Beyersmann, D. Zinc induces apoptosis that can be suppressed by lanthanum in C6 rat glioma cells. Biol. Chem. 2001, 382, 1227–1234. [Google Scholar] [CrossRef]
- Truong-Tran, A.Q.; Carter, J.; Ruffin, R.E.; Zalewski, P.D. The role of zinc in caspase activation and apoptotic cell death. Biometals 2001, 14, 315–330. [Google Scholar] [CrossRef]
- Lytkina, D.; Gutsalova, A.; Fedorishin, D.; Korotchenko, N.; Akhmedzhanov, R.; Kozik, V.; Kurzina, I. Synthesis and properties of zinc-modified hydroxyapatite. J. Funct. Biomater. 2020, 11, 10. [Google Scholar] [CrossRef] [Green Version]
- Botvin, V.; Pozdniakov, M.; Filimoshkin, A. Intermolecular “zipper” type depolymerization of oligomeric molecules of lactic and glycolic acids prepacked as paired associates. Polym. Degrad. Stab. 2017, 146, 126–131. [Google Scholar] [CrossRef]
- Lytkina, D.; Heinrich, L.; Churina, E.; Kurzina, I. Biocompatible composite materials based on porous hydroxyapatite ceramics and copolymer of lactide and glycolide. Materials 2021, 14, 2168. [Google Scholar] [CrossRef]
- Lurie, Y.Y. Handbook of Analytical Chemistry, 6th ed.; Khimiya: Moscow, Russia, 1989; 448p. [Google Scholar]
- Resslera, A.; Žužića, A.; Ivaniševića, I.; Kambojb, N.; Ivanković, H. Ionic substituted hydroxyapatite for bone regeneration applications: A review. Open Ceram 2021, 6, 100122. [Google Scholar] [CrossRef]
- Smith, A. Applied IR Spectroscopy; Mir Publishers: Moscow, Russia, 1982; 382p. [Google Scholar]
- Masuyama, R.; Nakaya, Y.; Katsumata, S.; Kajita, Y.; Uehara, M.; Tanaka, S.; Sakai, A.; Kato, S.; Nakamura, T.; Suzuki, K. Dietary calcium and phosphorus ratio regulates bone mineralization and turnover in vitamin D receptor knockout mice by affecting intestinal calcium and phosphorus absorption. J. Bone Miner. Res. 2003, 18, 1217–1226. [Google Scholar] [CrossRef]
- Kourkoumelis, N.; Tzaphlidou, M. Spectroscopic assessment of normal cortical bone: Differences in relation to bone site and sex. Sci. World J. 2010, 10, 402–412. [Google Scholar] [CrossRef] [Green Version]
- Kurzina, I.; Churina, Y.; Shapovalova, Y.; Syusyukina, V.; Kzhyshkowska, J. Immunomodulatory properties of composite materials based on polylactide and hydroxyapatite. Bioceram. Dev. Appl. 2018, 8, 109. [Google Scholar] [CrossRef]
- Prosolov, K.A.; Mitrichenko, D.V.; Prosolov, A.B.; Nikolaeva, O.O.; Lastovka, V.V.; Belyavskaya, O.A.; Chebodaeva, V.A.; Glukhov, I.A.; Litvinova, L.S.; Shupletsova, V.V.; et al. Zn-doped CaP-based coatings on Ti–6Al–4V and Ti–6Al–7Nb alloys prepared by magnetron sputtering: Controllable biodegradation, bacteriostatic, and osteogenic activities. Coatings 2021, 11, 809. [Google Scholar] [CrossRef]
Sample | Crystal Lattice Parameters | ||||
---|---|---|---|---|---|
a, Å | b, Å | c, Å | V, Å3 | CSR, nm | |
HA | 9.435 | 9.435 | 6.887 | 530 | 57 |
ZnxHA (x = 0.1) | 9.435 | 9.438 | 6.856 | 529 | 68 |
ZnxHA (x = 0.5) | 9.425 | 9.435 | 6.851 | 527 | 60 |
Sample | Element Content (at.%) | |||||
---|---|---|---|---|---|---|
O | Ca | P | Zn | C | ||
ZnxHA-PLGA (x = 0.1) | 57.5 | 12.8 | 7.3 | 0.2 | 22.2 | 1.7 |
ZnxHA-PLGA (x = 0.5) | 56.3 | 15.9 | 9.6 | 1.3 | 16.8 | 1.8 |
Samples | Number E. coli, CFU/mL | Number S. aureus, CFU/mL |
---|---|---|
Control | (1.19 ± 0.0407) × 108 | (1.74 ± 0.092) × 108 |
HA | (0.847 ± 0.118) × 108 | (1.73 ± 0.060) × 108 |
PLGA | (1.14 ± 0.118) × 108 | (1.75 ± 0.114) × 108 |
ZnxHA (x = 0.1) | (0.340 ± 0.030) × 108 | (1.32 ± 0.053) × 108 |
ZnxHA (x = 0.5) | (0.215 ± 0.028) × 108 | (0.247 ± 0.040) × 108 |
ZnxHA-PLGA (x = 0.1) | (1.26 ± 0.100) × 108 | (1.07 ± 0.077) × 108 |
ZnxHA-PLGA (x = 0.5) | (1.06 ± 0.0655) × 108 | (0.367 ± 0.042) × 108 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lytkina, D.; Gutsalova, A.; Fedorishin, D.; Kurzina, I. Obtaining Biocompatible Porous Composite Material Based on Zinc-Modified Hydroxyapatite and Lactide-Glycolide Copolymer. Crystals 2021, 11, 1519. https://doi.org/10.3390/cryst11121519
Lytkina D, Gutsalova A, Fedorishin D, Kurzina I. Obtaining Biocompatible Porous Composite Material Based on Zinc-Modified Hydroxyapatite and Lactide-Glycolide Copolymer. Crystals. 2021; 11(12):1519. https://doi.org/10.3390/cryst11121519
Chicago/Turabian StyleLytkina, Daria, Anastasiya Gutsalova, Dmitry Fedorishin, and Irina Kurzina. 2021. "Obtaining Biocompatible Porous Composite Material Based on Zinc-Modified Hydroxyapatite and Lactide-Glycolide Copolymer" Crystals 11, no. 12: 1519. https://doi.org/10.3390/cryst11121519
APA StyleLytkina, D., Gutsalova, A., Fedorishin, D., & Kurzina, I. (2021). Obtaining Biocompatible Porous Composite Material Based on Zinc-Modified Hydroxyapatite and Lactide-Glycolide Copolymer. Crystals, 11(12), 1519. https://doi.org/10.3390/cryst11121519