Enhanced Properties of Extended Wavelength InGaAs on Compositionally Undulating Step-Graded InAsP Buffers Grown by Molecular Beam Epitaxy
Abstract
:1. Introduction
2. Experiments
2.1. Growth of Extended Wavelength InGaAs Structure
2.2. Measurements of Structural and Optical Properties
3. Results and Discussion
3.1. Surface Morphology
3.2. The Structural Property
3.3. The Optical Property
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nahory, R.; Pollack, M.; Johnston, W.; Barns, R. Band-gap Versus Composition and Demonstration of Vegards Law for In1-xGaxAsyP1-y Lattice Matched to InP. Appl. Phys. Lett. 1978, 33, 659–661. [Google Scholar] [CrossRef]
- Kleipool, Q.L.; Jongma, R.T.; Gloudemans, A.M.S.; Schrijver, H.; Lichtenberg, G.F.; van Hees, R.M.; Maurellis, A.N.; Hoogeveen, R.W.M. In-Flight Proton-Induced Radiation Damage to SCIAMACHY’s Extended-Wavelength InGaAs near-Infrared Detectors. Infrared Phys. Technol. 2007, 50, 30–37. [Google Scholar] [CrossRef]
- Dai, P.; Lu, S.; Uchida, S.; Ji, L.; Wu, Y.; Tan, M.; Bian, L.; Yang, H. Room-Temperature Wafer Bonded InGaP/GaAs//InGaAsP/InGaAs Four-Junction Solar Cell Grown by All-Solid State Molecular Beam Epitaxy. Appl. Phys. Express 2016, 9, 016501. [Google Scholar] [CrossRef]
- Gamel, M.M.A.; Lee, H.J.; Rashid, W.E.S.W.A.; Ker, P.J.; Yau, L.K.; Hannan, M.A.; Jamaludin, M.Z. A Review on Thermophotovoltaic Cell and Its Applications in Energy Conversion: Issues and Recommendations. Materials 2021, 14, 4944. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ji, L.; Dai, P.; Tan, M.; Lu, S.; Yang, H. Effects of Buffer Layer and Back-Surface Field on MBE-Grown InGaAsP/InGaAs Solar Cells. Jpn. J. Appl. Phys. 2016, 55, 022301. [Google Scholar] [CrossRef]
- Zhang, J.; Itzler, M.A.; Zbinden, H.; Pan, J.-W. Advances in InGaAs/InP Single-Photon Detector Systems for Quantum Communication. Light Sci. Appl. 2015, 4, e286. [Google Scholar] [CrossRef] [Green Version]
- Hudait, M.K.; Brenner, M.; Ringel, S.A. Metamorphic In0.7Al0.3As/In0.69Ga0.31As Thermophotovoltaic Devices Grown on Graded InAsyP1-y Buffers by Molecular Beam Epitaxy. Solid-State Electron. 2009, 53, 102–106. [Google Scholar] [CrossRef]
- Ji, L.; Lu, S.L.; Zhao, Y.M.; Tan, M.; Dong, J.R.; Yang, H. Compositionally Undulating Step-Graded InAsyP1-y Buffer Layer Growth by Metal-Organic Chemical Vapor Deposition. J. Cryst. Growth 2013, 363, 44–48. [Google Scholar] [CrossRef]
- Ji, L.; Lu, S.-L.; Jiang, D.-S.; Zhao, Y.-M.; Tan, M.; Zhu, Y.-Q.; Dong, J.-R. 0.6-EV Bandgap In0.69Ga0.31As Thermophotovoltaic Devices with Compositionally Undulating Step-Graded InAsyP(1-y)Buffers. Chin. Phys. B 2013, 22, 026802. [Google Scholar] [CrossRef]
- Hudait, M.; Lin, Y.; Palmisiano, M.; Ringel, S. 0.6-EV Bandgap In0.69Ga0.31As Thermophotovoltaic Devices Grown on InAsyP1-y Step-Graded Buffers by Molecular Beam Epitaxy. IEEE Electron. Device Lett. 2003, 24, 538–540. [Google Scholar] [CrossRef]
- Besikci, C. Extended Short Wavelength Infrared FPA Technology: Status and Trends. In Proceedings of the Quantum Sensing and Nano Electronics and Photonics XV, San Francisco, CA, USA, 28 January–2 February 2018; Razeghi, M., Brown, G., Lewis, J., Leo, G., Eds.; SPIE: Bellingham, WA, USA, 2018; Volume 10540. [Google Scholar]
- Smiri, B.; Ben Arbia, M.; Ilkay, D.; Saidi, F.; Othmen, Z.; Dkhil, B.; Ismail, A.; Sezai, E.; Hassen, F.; Maaref, H. Optical and Structural Properties of In-Rich InxGa1-XAs Epitaxial Layers on (100) InP for SWIR Detectors. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2020, 262, 114769. [Google Scholar] [CrossRef]
- Mehdi, H.; Martin, M.; Jany, C.; Virot, L.; Hartmann, J.M.; Da Fonseca, J.; Moeyaert, J.; Gaillard, P.; Coignus, J.; Leroux, C.; et al. Monolithically Integrated InGaAs/AlGaAs Multiple Quantum Well Photodetectors on 300 Mm Si Wafers. AIP Adv. 2021, 11, 085028. [Google Scholar] [CrossRef]
- Zhang, Y.-G.; Gu, Y.; Wang, K.; Li, A.-Z.; Li, C. Properties of Gas Source Molecular Beam Epitaxy Grown Wavelength Extended InGaAs Photodetector Structures on a Linear Graded InAlAs Buffer. Semicond. Sci. Technol. 2008, 23, 125029. [Google Scholar] [CrossRef]
- Zimmermann, L.; John, J.; Degroote, S.; Borghs, G.; Van Hoof, C.; Nemeth, S. Extended Wavelength InGaAs on GaAs Using InAlAs Buffer for Back-Side-Illuminated Short-Wave Infrared Detectors. Appl. Phys. Lett. 2003, 82, 2838–2840. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, Y.-G.; Li, A.-Z.; Wang, K.; Li, C.; Li, Y.-Y. Structural and Photoluminescence Properties for Highly Strain-Compensated InGaAs/InAlAs Superlattice. Chin. Phys. Lett. 2009, 26, 077808. [Google Scholar]
- Hidouri, T.; Saidi, F.; Al-Shahri, B.M. Tuning Spontaneous Emission in BInGaAs/GaAs QWs by Varying the Growth Temperature: Above 1.2 Μm Emission and Solar Cells Application. Opt. Quantum Electron. 2021, 53, 532. [Google Scholar] [CrossRef]
- Saidi, H.; Zitouni, O.; Ridene, S. Investigation of Orientation Dependence of Piezoelectric Effects in Strained GaAs/InGaAs Quantum Well Laser. Mater. Sci. Eng. B 2021, 273, 115400. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, Y.G.; Wang, K.; Fang, X.; Li, C.; Zhou, L.; Li, A.Z.; Li, H. Effects of Growth Temperature and Buffer Scheme on Characteristics of InP-Based Metamorphic InGaAs Photodetectors. J. Cryst. Growth 2013, 378, 65–68. [Google Scholar] [CrossRef]
- Hudait, M.; Lin, Y.; Palmisiano, M.; Tivarus, C.; Pelz, J.; Ringel, S. Comparison of Mixed Anion, InAsyP1-y and Mixed Cation, InxAl1-XAs Metamorphic Buffers Grown by Molecular Beam Epitaxy on (100)InP Substrates. J. Appl. Phys. 2004, 95, 3952–3960. [Google Scholar] [CrossRef] [Green Version]
- Andrews, A.; LeSar, R.; Kerner, M.; Speck, J.; Romanov, A.; Kolesnikova, A.; Bobeth, M.; Pompe, W. Modeling Crosshatch Surface Morphology in Growing Mismatched Layers. Part II: Periodic Boundary Conditions and Dislocation Groups. J. Appl. Phys. 2004, 95, 6032–6047. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Gu, Y.; Zhang, Y.G.; Zhou, L.; Wang, K.; Li, H.S.B.Y.; Liu, K.H.; Cao, Y.Y. Effects of Compositional Overshoot on InP-Based InAlAs Metamorphic Graded Buffer. J. Infrared Millim. Waves 2013, 32, 481. [Google Scholar] [CrossRef]
- Hornstra, J.; Bartels, W. Determination of Lattice-Constant of Epitaxial Layers of III-V Compounds. J. Cryst. Growth 1978, 44, 513–517. [Google Scholar] [CrossRef]
- Tseng, M.-C.; Horng, R.-H.; Wuu, D.-S.; Yang, M.-D. Effect of Crystalline Quality on Photovoltaic Performance for In0.17Ga0.83As Solar Cell Using X-Ray Reciprocal Space Mapping. IEEE J. Quantum Electron. 2011, 47, 1434–1442. [Google Scholar] [CrossRef]
- He, Y.; Yan, W.; Sun, Y.; Dong, J. Improved Quality of InP Layer on GaAs Substrates by Using Compositionally Modulated Step-Graded AlGaInAs Buffers. J. Mater. Sci. Mater. Electron. 2019, 30, 16251–16256. [Google Scholar] [CrossRef]
- Romanov, A.; Pompe, W.; Beltz, G.; Speck, J. Modeling of Threading Dislocation Density Reduction in Heteroepitaxial Layers. I. Geometry and Crystallography. Phys. Status Solidi B-Basic Res. 1996, 198, 599–613. [Google Scholar] [CrossRef]
- Ahrenkiel, S.P.; Wanlass, M.W.; Carapella, J.J.; Ahrenkiel, R.K.; Johnston, S.W.; Gedvilas, L.M. Optimization of Buffer Layers for Lattice-Mismatched Epitaxy of GaxIn1−xAs/InAsyP1−y Double-Heterostructures on InP. Sol. Energy Mater. Sol. Cells 2007, 91, 908–918. [Google Scholar] [CrossRef]
- Hidouri, T.; Parisini, A.; Ferrari, C.; Orsi, D.; Baraldi, A.; Vantaggio, S.; Nasr, S.; Bosio, A.; Pavesi, M.; Saidi, F.; et al. Combined Impact of B2H6 Flow and Growth Temperature on Morphological, Structural, Optical, and Electrical Properties of MOCVD-Grown B(In)GaAs Heterostructures Designed for Optoelectronics. Appl. Surf. Sci. 2021, 151884, in press. [Google Scholar] [CrossRef]
- Su, Z.C.; Xu, S.J.; Wang, R.X.; Ning, J.Q.; Dong, J.R.; Lu, S.L.; Yang, H. Electroluminescence Probe of Internal Processes of Carriers in GaInP Single Junction Solar Cell. Sol. Energy Mater. Sol. Cells 2017, 168, 201–206. [Google Scholar] [CrossRef]
- Varshni, Y. Temperature Dependence of Energy Gap in Semiconductors. Physica 1967, 34, 149–154. [Google Scholar] [CrossRef]
- Lambkin, J.; Considine, L.; Walsh, S.; Oconnor, G.; Mcdonagh, C.; Glynn, T. Temperature-dependence of the Photoluminescence Intensity of Ordered and Disordered In0.48Ga0.52P. Appl. Phys. Lett. 1994, 65, 73–75. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, W.; Xing, Z.; Qiu, H.; Gu, Y.; Bian, L.; Lu, S.; Qin, H.; Cai, Y.; Suzuki, Y.; et al. Investigation of Micromorphology and Carrier Recombination Dynamics for InGaN/GaN Multi-Quantum Dots Grown by Molecular Beam Epitaxy. Crystals 2021, 11, 1312. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Xu, J.; Wei, T.; Yang, W.; Jin, S.; Wu, Y.; Lu, S. Enhanced Properties of Extended Wavelength InGaAs on Compositionally Undulating Step-Graded InAsP Buffers Grown by Molecular Beam Epitaxy. Crystals 2021, 11, 1590. https://doi.org/10.3390/cryst11121590
Li X, Xu J, Wei T, Yang W, Jin S, Wu Y, Lu S. Enhanced Properties of Extended Wavelength InGaAs on Compositionally Undulating Step-Graded InAsP Buffers Grown by Molecular Beam Epitaxy. Crystals. 2021; 11(12):1590. https://doi.org/10.3390/cryst11121590
Chicago/Turabian StyleLi, Xuefei, Jianming Xu, Tieshi Wei, Wenxian Yang, Shan Jin, Yuanyuan Wu, and Shulong Lu. 2021. "Enhanced Properties of Extended Wavelength InGaAs on Compositionally Undulating Step-Graded InAsP Buffers Grown by Molecular Beam Epitaxy" Crystals 11, no. 12: 1590. https://doi.org/10.3390/cryst11121590
APA StyleLi, X., Xu, J., Wei, T., Yang, W., Jin, S., Wu, Y., & Lu, S. (2021). Enhanced Properties of Extended Wavelength InGaAs on Compositionally Undulating Step-Graded InAsP Buffers Grown by Molecular Beam Epitaxy. Crystals, 11(12), 1590. https://doi.org/10.3390/cryst11121590