Studies on the Characteristics of Nanostructures Produced by Sparking Discharge Process in the Ambient Atmosphere for Air Filtration Application
Abstract
:1. Introduction
2. Experimental
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hosokawa, M.; Nogi, K.; Naito, M.; Yokoyama, T. Basic properties and measuring methods of nanoparticles. In Na-Noparticle Technology Handbook; Masuo, H., Kiyoshi, N., Mario, N., Toyokaz, U.Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 33–48. [Google Scholar]
- Hamad, A.; Lin, L.; Zhu, L.; Xinag, Z.; Hong, L.; Tao, W. Generation of silver titania nanoparticles from an Ag–Ti alloy via picosecond laser ablation and their antibacterial activities. RSC Adv. 2015, 5, 72981–72994. [Google Scholar] [CrossRef]
- Yasuda, K.; Sato, T.; Asakura, Y. Size-controlled synthesis of gold nanoparticles by ultrafine bubbles and pulsed ul-trasound. Chem. Eng. Sci. 2020, 217, 15527. [Google Scholar] [CrossRef]
- Jung, J.H.; Kim, S.B.; Kim, S.S. Nanoparticle generation using corona discharge ions from a supersonic flow in low pressure. Powder Technol. 2008, 185, 58–66. [Google Scholar]
- Kumpika, T.; Thongsuwan, W.; Singjai, P. Atomic force microscopy imaging of ZnO nanodots deposited on quartz by sparking off different tip shapes. Surf. Interface Anal. 2006, 39, 58–63. [Google Scholar] [CrossRef]
- Kumpika, T.; Thongsuwan, W.; Singjai, P. Optical and electrical properties of ZnO nanoparticle thin films deposited on quartz by sparking process. Thin Solid Films 2008, 516, 5640–5644. [Google Scholar] [CrossRef]
- Kumpika, T.; Kantarak, E.; Sroila, W.; Panthawan, A.; Jhuntama, N.; Sanmuangmoon, P.; Thongsuwan, W.; Singjai, P. Superhydrophilic/superhydrophobic surfaces fabricated by spark-coating. Surf. Interface Anal. 2018, 50, 827–834. [Google Scholar] [CrossRef]
- Kumpika, T.; Kantarak, E.; Sroila, W.; Panthawan, A.; Sanmuangmoon, P.; Thongsuwan, W.; Singjai, P. Fabrication and composition control of porous ZnO-TiO2 binary oxide thin films via a sparking method. Optik 2017, 133, 114–121. [Google Scholar] [CrossRef]
- Tippo, P.; Thongsuwan, W.; Wiranwetchayan, O.; Kumpika, T.; Tuantranont, A.; Singjai, P. Investigation of NiO film by sparking method under a magnetic field and NiO/ZnO heterojunction. Mater. Res. Express 2020, 7, 056403. [Google Scholar] [CrossRef]
- Thongsuwan, W.; Kumpika, T.; Singjai, P. Effect of high roughness on a long aging time of superhydrophilic TiO2 nanoparticle thin films. Curr. Appl. Phys. 2011, 11, 1237–1242. [Google Scholar] [CrossRef]
- Thongsuwan, W.; Kumpika, T.; Singjai, P. Photocatalytic property of colloidal TiO2 nanoparticles prepared by sparking process. Curr. Appl. Phys. 2008, 8, 563–568. [Google Scholar] [CrossRef]
- Wang, H.; Xie, C.; Zeng, D. Controlled growth of ZnO by adding H2O. J. Cryst. Growth 2005, 277, 372–377. [Google Scholar] [CrossRef]
- Tabrizi, N.S.; Ullmann, M.; Vons, V.A.; Lafont, U.; Schmidt-Ott, A. Generation of nanoparticles by spark discharge. J. Nanoparticle Res. 2009, 11, 315–332. [Google Scholar] [CrossRef] [Green Version]
- Stefan, R.; Jakmunee, J.; Punyodom, W.; Singjai, P. A Novel Strategy for Longevity Prolongation of Iron-Based Nano-particle Thin Films by Applied Magnetic Force. New J. Chem. 2018, 42, 4807–4810. [Google Scholar]
- Castle, J.E.; Zhdan, P.A.; Singjai, P. Enhanced morphological reconstruction of SPM images. J. Phys. D Appl. Phys. 1998, 31, 3437–3445. [Google Scholar] [CrossRef]
- Vinet, B.; Magnusson, L.; Fredriksson, H.; Desré, P.J. Correlations between Surface and Interface Energies with Respect to Crystal Nucleation. J. Colloid Interface Sci. 2002, 255, 363–374. [Google Scholar] [CrossRef]
- Ung, T.; Liz-Marza, L.M.; Mulvaney, P. Gold nanoparticle thin films. Colloids Surf. 2002, 202, 119–126. [Google Scholar] [CrossRef]
- Barrufet, M.; Patel, M.; Eubank, P. Novel computations of a moving boundary heat conduction problem applied to EDM technology. Comput. Chem. Eng. 1991, 15, 609–618. [Google Scholar] [CrossRef]
- Talib, M.; Tabassum, R.; Islam, S.S.; Mishra, P. Influence of growth temperature on titanium sulphide nanostructures: From trisulphide nanosheets and nanoribbons to disulphide nanodiscs. RSC Adv. 2019, 9, 645–657. [Google Scholar] [CrossRef] [Green Version]
- Arachchige, H.M.M.M.; Zappa, D.; Poli, N.; Gunawardhana, N.; Attanayake, N.H.; Comini, E. Seed-Assisted Growth of TiO2 Nanowires by Thermal Oxidation for Chemical Gas Sensing. Nanomaterials 2020, 10, 935. [Google Scholar] [CrossRef]
- Ručman, S.S.; Punyodom, W.; Jakmunee, J.; Singjai, P. Inducing Crystallinity of Metal Thin Films with Weak Mag-netic Fields without Thermal Annealing. Crystals 2018, 8, 362. [Google Scholar] [CrossRef] [Green Version]
- Ručman, S.; Boonruang, C.; Singjai, P. The Effect of a Weak Magnetic Field (0 T to 0.4 T) on the Valence Band and Intramolecular Hydrogen of Inorganic Aerosol Metal–Nitrogen Gas Chemical Reactions in a Sparking Discharge Process. Crystals 2020, 10, 1141. [Google Scholar] [CrossRef]
- Hallberg, R.T.; Ludvigsson, L.; Preger, C.; Meuller, B.O.; Dick, K.A.; Messing, M.E. Hydrogen-Assisted Spark Dis-charge Generated Metal Nanoparticles to Prevent Oxide Formation. Aerosol Sci. Technol. 2017, 52, 347–358. [Google Scholar] [CrossRef] [Green Version]
- Meuller, B.O.; Messing, M.E.; Engberg, D.L.J.; Jansson, A.M.; Johansson, L.I.M.; Norlén, S.M.; Tureson, N.; Deppert, K. Review of Spark Discharge Generators for Production of Nanoparticle Aerosols. Aerosol Sci. Technol. 2012, 46, 1256–1270. [Google Scholar] [CrossRef]
- Zangmeister, C.D.; Radney, J.G.; Vicenzi, E.P.; Weaver, J.L. Filtration Efficiencies of Nanoscale Aerosol by Cloth Mask Materials Used to Slow the Spread of SARS-CoV2. ACS Nano. 2020, 14, 9188–9200. [Google Scholar] [CrossRef] [PubMed]
- Ručman, S.; Intra, P.; Kantarak, E.; Sroila, W.; Kumpika, T.; Jakmunee, J.; Punyodom, W.; Arsić, B.; Singjai, P. Influence of the Magnetic Field on Bandgap and Chemical Composition of Zinc Thin Films Prepared by Sparking Discharge Process. Sci. Rep. 2020, 10, 1–11. [Google Scholar]
- Spark Ablation; CRC Press: Boca Raton, FL, USA, 2019.
- Pooseekheaw, P.; Thongpan, W.; Panthawan, A.; Kantarak, E.; Sroila, W.; Singjai, P. Porous V2O5/TiO2 Nanohetero-structure Films with Enhanced Visible-Light Photocatalytic Performance Prepared by the Sparking Method. Molecules 2020, 25, 3327. [Google Scholar] [CrossRef] [PubMed]
- Kohut, A.; Wagner, M.; Seipenbusch, M.; Geretovszky, Z.; Galbács, G. Surface features and energy considerations related to the erosion processes of Cu and Ni electrodes in a spark discharge nanoparticle generator. J. Aerosol Sci. 2018, 119, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Domaschke, M.; Schmidt, M.; Peukert, W. A model for the particle mass yield in the aerosol synthesis of ultrafine monometallic nanoparticles by spark ablation. J. Aerosol Sci. 2018, 126, 133–142. [Google Scholar] [CrossRef]
Metals. | Tm (K) | σLV (Jm−1) | cp (Jg−1K−1) | k (Wcm−1K−1) | Lf (Jg−1) | Lv (Jg−1) | Height (nm) |
---|---|---|---|---|---|---|---|
Zn | 693 | 0.789 | 0.39 | 1.16 | 244 | 3,843 | 3.30 |
Al | 933 | 0.871 | 0.9 | 2.37 | 830 | 22,569 | 3.15 |
Ag | 1235 | 0.925 | 0.24 | 4.29 | 240 | 5,319 | 2.71 |
Au | 1337 | 1.145 | 0.13 | 3.17 | 158 | 4,233 | 2.63 |
Ni | 1718 | 1.796 | 0.44 | 0.91 | 623 | 13,228 | 2.02 |
Co | 1811 | 1.881 | 0.42 | 1.00 | 599 | 13,944 | 1.50 |
Ti | 1941 | 1.525 | 0.52 | 0.22 | 702 | 19,136 | 1.23 |
V | 2183 | 1.855 | 0.49 | 0.31 | 908 | 19,652 | 1.08 |
Mo | 2896 | 2.080 | 0.25 | 1.38 | 761 | 14,238 | 0.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumpika, T.; Ručman, S.; Polin, S.; Kantarak, E.; Sroila, W.; Thongsuwan, W.; Panthawan, A.; Sanmuangmoon, P.; Jhuntama, N.; Singjai, P. Studies on the Characteristics of Nanostructures Produced by Sparking Discharge Process in the Ambient Atmosphere for Air Filtration Application. Crystals 2021, 11, 140. https://doi.org/10.3390/cryst11020140
Kumpika T, Ručman S, Polin S, Kantarak E, Sroila W, Thongsuwan W, Panthawan A, Sanmuangmoon P, Jhuntama N, Singjai P. Studies on the Characteristics of Nanostructures Produced by Sparking Discharge Process in the Ambient Atmosphere for Air Filtration Application. Crystals. 2021; 11(2):140. https://doi.org/10.3390/cryst11020140
Chicago/Turabian StyleKumpika, Tewasin, Stefan Ručman, Siwat Polin, Ekkapong Kantarak, Wattikon Sroila, Wiradej Thongsuwan, Arisara Panthawan, Panupong Sanmuangmoon, Niwat Jhuntama, and Pisith Singjai. 2021. "Studies on the Characteristics of Nanostructures Produced by Sparking Discharge Process in the Ambient Atmosphere for Air Filtration Application" Crystals 11, no. 2: 140. https://doi.org/10.3390/cryst11020140
APA StyleKumpika, T., Ručman, S., Polin, S., Kantarak, E., Sroila, W., Thongsuwan, W., Panthawan, A., Sanmuangmoon, P., Jhuntama, N., & Singjai, P. (2021). Studies on the Characteristics of Nanostructures Produced by Sparking Discharge Process in the Ambient Atmosphere for Air Filtration Application. Crystals, 11(2), 140. https://doi.org/10.3390/cryst11020140