Light-Driven Pitch Tuning of Self-Assembled Hierarchical Gratings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kuppe, C.; Williams, C.; You, J.; Collins, J.T.; Gordeev, S.N.; Wilkinson, T.D.; Panoiu, N.-C.; Valev, V.K. Circular dichroism in higher-order diffraction beams from chiral quasiplanar nanostructures. Adv. Opt. Mater. 2018, 6, 1800098. [Google Scholar] [CrossRef]
- Espinha, A.; Dore, C.; Matricardi, C.; Alonso, M.I.; Goni, A.R.; Mihi, A. Hydroxypropyl cellulose photonic architectures by soft nanoimprinting lithography. Nat. Photonics 2018, 12, 343–348. [Google Scholar] [CrossRef]
- Yu, C.; O’Brien, K.; Zhang, Y.-H.; Yu, H.; Jiang, H. Tunable optical gratings based on buckled nanoscale thin films on transparent elastomeric substrates. Appl. Phys. Lett. 2010, 96, 041111. [Google Scholar] [CrossRef]
- Ryabchun, A.; Wegener, M.; Gritsai, Y.; Sakhno, O. Novel effective approach for the fabrication of pdms-based elastic volume gratings. Adv. Opt. Mater. 2015, 4, 169–176. [Google Scholar] [CrossRef]
- Bisoyi, H.K.; Li, Q. Light-directing chiral liquid crystal nanostructures: From 1d to 3d. Acc. Chem. Res. 2014, 47, 3184–3195. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.L.; Tang, M.J.; Hu, W.; Cui, Z.Q.; Ge, S.J.; Chen, P.; Chen, L.J.; Qian, H.; Chi, L.F.; Lu, Y.Q. Smectic layer origami via preprogrammed photoalignment. Adv. Mater. 2017, 29, 1606671. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.-L.; Hu, W.; Zheng, Z.-G.; Wu, S.-B.; Chen, P.; Li, Q.; Lu, Y.-Q. Light-activated liquid crystalline hierarchical architecture toward photonics. Adv. Opt. Mater. 2019, 7, 1900393. [Google Scholar] [CrossRef]
- Guglielmelli, A.; Nemati, S.; Vasdekis, A.E.; De Sio, L. Stimuli responsive diffraction gratings in soft-composite materials. J. Phys. D Appl. Phys. 2019, 52, 053001. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, X.; Srivastava, A.K.; Chigrinov, V.G.; Kwok, H.S. Fast switchable ferroelectric liquid crystal gratings with two electro-optical modes. AIP Adv. 2016, 6, 035207. [Google Scholar] [CrossRef]
- Ma, Y.; Wei, B.Y.; Shi, L.Y.; Srivastava, A.K.; Chigrinov, V.G.; Kwok, H.S.; Hu, W.; Lu, Y.Q. Fork gratings based on ferroelectric liquid crystals. Opt. Express 2016, 24, 5822–5828. [Google Scholar] [CrossRef]
- Ryabchun, A.; Yakovlev, D.; Bobrovsky, A.; Katsonis, N. Dynamic diffractive patterns in helix-inverting cholesteric liquid crystals. ACS Appl. Mater. Interfaces 2019, 11, 10895–10904. [Google Scholar] [CrossRef]
- Ryabchun, A.; Bobrovsky, A. Cholesteric liquid crystal materials for tunable diffractive optics. Adv. Opt. Mater. 2018, 6, 1800335. [Google Scholar] [CrossRef]
- Ryabchun, A.; Bobrovsky, A.; Stumpe, J.; Shibaev, V. Rotatable diffraction gratings based on cholesteric liquid crystals with phototunable helix pitch. Adv. Opt. Mater. 2015, 3, 1273–1279. [Google Scholar] [CrossRef]
- Jau, H.C.; Li, Y.; Li, C.C.; Chen, C.W.; Wang, C.T.; Bisoyi, H.K.; Lin, T.H.; Bunning, T.J.; Li, Q. Light-driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch. Adv. Opt. Mater. 2015, 3, 166–170. [Google Scholar] [CrossRef]
- Mitov, M.; Portet, C.; Bourgerette, C.; Snoeck, E.; Verelst, M. Long-range structuring of nanoparticles by mimicry of a cholesteric liquid crystal. Nat. Mater. 2002, 1, 229–231. [Google Scholar] [CrossRef] [PubMed]
- Voloschenko, D.; Lavrentovich, O.D. Optical vortices generated by dislocations in a cholesteric liquid crystal. Opt. Lett. 2000, 25, 317–319. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Yuan, C.-L.; Shen, D.; Zheng, Z.-G. Dynamically manipulated lasing enabled by a reconfigured fingerprint texture of a cholesteric self-organized superstructure. J. Mater. Chem. C 2017, 5, 6923–6928. [Google Scholar] [CrossRef]
- Li, W.-S.; Shen, Y.; Chen, Z.-J.; Cui, Q.; Li, S.-S.; Chen, L.-J. Demonstration of patterned polymer-stabilized cholesteric liquid crystal textures for anti-counterfeiting two-dimensional barcodes. Appl. Opt. 2017, 56, 601–606. [Google Scholar] [CrossRef]
- Jeong, H.S.; Kim, Y.H.; Lee, J.S.; Kim, J.H.; Srinivasarao, M.; Jung, H.T. Chiral nematic fluids as masks for lithography. Adv. Mater. 2012, 24, 381–384. [Google Scholar] [CrossRef]
- Wu, J.-J.; Wu, Y.-S.; Chen, F.-C.; Chen, S.-H. Formation of phase grating in planar aligned cholesteric liquid crystal film. Jpn. J. Appl. Phys. 2002, 41, L1318–L1320. [Google Scholar] [CrossRef]
- Wu, J.-J.; Chen, F.-C.; Wu, Y.-S.; Chen, S.-H. Phase gratings in pretilted homeotropic cholesteric liquid crystal films. Jpn. J. Appl. Phys. 2002, 41, 6108–6109. [Google Scholar] [CrossRef]
- Yeh, H.-C.; Chen, G.-H.; Lee, C.-R.; Mo, T.-S. Photoinduced two-dimensional gratings based on dye-doped cholesteric liquid crystal films. J. Chem. Phys. 2007, 127, 141105. [Google Scholar] [CrossRef]
- Li, W.-S.; Ma, L.-L.; Gong, L.-L.; Li, S.-S.; Yang, C.; Luo, B.; Hu, W.; Chen, L.-J. Interlaced cholesteric liquid crystal fingerprint textures via sequential uv-induced polymer-stabilization. Opt. Mater. Express 2016, 6, 19–28. [Google Scholar] [CrossRef]
- Yao, I.A.; Liaw, C.-H.; Chen, S.-H.; Wu, J.-J. Direction-tunable cholesteric phase gratings. J. Appl. Phys. 2004, 96, 1760–1762. [Google Scholar] [CrossRef]
- Ma, L.-L.; Li, S.-S.; Li, W.-S.; Ji, W.; Luo, B.; Zheng, Z.-G.; Cai, Z.-P.; Chigrinov, V.; Lu, Y.-Q.; Hu, W.; et al. Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals. Adv. Opt. Mater. 2015, 3, 1691–1696. [Google Scholar] [CrossRef]
- Zheng, Z.-G.; Li, Y.; Bisoyi, H.K.; Wang, L.; Bunning, T.J.; Li, Q. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light. Nature 2016, 531, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wang, P.X.; D’Acierno, F.; Hamad, W.Y.; Michal, C.A.; MacLachlan, M.J. Tunable diffraction gratings from biosourced lyotropic liquid crystals. Adv. Mater. 2020, 32, 1907376. [Google Scholar] [CrossRef]
- Hamdi, R.; Petriashvili, G.; De Santo, M.; Lombardo, G.; Barberi, R. Electrically controlled 1d and 2d cholesteric liquid crystal gratings. Mol. Cryst. Liq. Cryst. 2012, 553, 97–102. [Google Scholar] [CrossRef]
- Chen, C.-W.; Li, C.-C.; Jau, H.-C.; Lee, C.-H.; Wang, C.-T.; Lin, T.-H. Bistable light-driven π phase switching using a twisted nematic liquid crystal film. Opt. Express 2014, 22, 12133–12138. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, Y.-C.; Huang, K.-C.; Lee, W. Photo-switchable chiral liquid crystal with optical tristability enabled by a photoresponsive azo-chiral dopant. Opt. Express 2017, 25, 2687–2693. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.C.; Hsiao, Y.C.; Timofeev, I.V.; Zyryanov, V.Y.; Lee, W. Photo-manipulated photonic bandgap devices based on optically tristable chiral-tilted homeotropic nematic liquid crystal. Opt. Express 2016, 24, 25019–25025. [Google Scholar] [CrossRef]
- Hu, W.; Kumar Srivastava, A.; Lin, X.W.; Liang, X.; Wu, Z.J.; Sun, J.T.; Zhu, G.; Chigrinov, V.G.; Lu, Y.Q. Polarization independent liquid crystal gratings based on orthogonal photoalignments. Appl. Phys. Lett. 2012, 100, 111116. [Google Scholar] [CrossRef]
- Wu, H.; Hu, W.; Hu, H.C.; Lin, X.W.; Zhu, G.; Choi, J.W.; Chigrinov, V.G.; Lu, Y.Q. Arbitrary photo-patterning in liquid crystal alignments using dmd based lithography system. Opt. Express 2012, 20, 16684–16689. [Google Scholar] [CrossRef]
- Wei, B.-Y.; Hu, W.; Ming, Y.; Xu, F.; Rubin, S.; Wang, J.-G.; Chigrinov, V.G.; Lu, Y.-Q. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals. Adv. Mater. 2014, 26, 1590–1595. [Google Scholar] [CrossRef]
- van Sprang, H.A.; van de Venne, J.L.M. Influence of the surface interaction on threshold values in the cholesteric-nematic phase transition. J. Appl. Phys. 1985, 57, 175–179. [Google Scholar] [CrossRef]
- Subacius, D.; Bos, P.J.; Lavrentovich, O.D. Switchable diffractive cholesteric gratings. Appl. Phys. Lett. 1997, 71, 1350–1352. [Google Scholar] [CrossRef]
- Hung, W.-C.; Cheng, W.-H.; Liu, T.-K.; Jiang, I.M.; Tsai, M.-S.; Yeh, P. Diffraction of cholesteric liquid crystal gratings probed by monochromatic light from 450 to 750 nm. J. Appl. Phys. 2008, 104, 073106. [Google Scholar] [CrossRef]
- Yada, M.; Yamamoto, J.; Yokoyama, H. Direct observation of anisotropic interparticle forces in nematic colloids with optical tweezers. Phys. Rev. Lett. 2004, 92, 185501. [Google Scholar] [CrossRef]
- Fuh, A.Y.-G.; Lin, C.-H.; Huang, C.-Y. Dynamic pattern formation and beam-steering characteristics of cholesteric gratings. Jpn. J. Appl. Phys. 2002, 41, 211–218. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.-H.; Wu, S.-B.; Liu, C.; Tan, Q.-G.; Yuan, R.; Wang, J.-G.; Ma, L.-L.; Hu, W. Light-Driven Pitch Tuning of Self-Assembled Hierarchical Gratings. Crystals 2021, 11, 326. https://doi.org/10.3390/cryst11040326
Wu Y-H, Wu S-B, Liu C, Tan Q-G, Yuan R, Wang J-G, Ma L-L, Hu W. Light-Driven Pitch Tuning of Self-Assembled Hierarchical Gratings. Crystals. 2021; 11(4):326. https://doi.org/10.3390/cryst11040326
Chicago/Turabian StyleWu, Yuan-Hang, Sai-Bo Wu, Chao Liu, Qing-Gui Tan, Rui Yuan, Jing-Ge Wang, Ling-Ling Ma, and Wei Hu. 2021. "Light-Driven Pitch Tuning of Self-Assembled Hierarchical Gratings" Crystals 11, no. 4: 326. https://doi.org/10.3390/cryst11040326
APA StyleWu, Y.-H., Wu, S.-B., Liu, C., Tan, Q.-G., Yuan, R., Wang, J.-G., Ma, L.-L., & Hu, W. (2021). Light-Driven Pitch Tuning of Self-Assembled Hierarchical Gratings. Crystals, 11(4), 326. https://doi.org/10.3390/cryst11040326