The Prediction of the Undercooling Degree of As-Cast Irons and Aluminum Alloys via Machine Learning
Abstract
:1. Introduction
2. Data Collection and Computation Method
2.1. Data Collection and Features Selection
2.2. Computational Methods
2.2.1. Normalization Processing
2.2.2. Correlation Analysis and Machine Learning
3. Results and Discussion
3.1. Correlation Analysis and Algorithm Selection
3.2. Cross-Validation
3.3. Combination of Features
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
MM | CR | NL | MAR | MMN | NSP | UR |
---|---|---|---|---|---|---|
3.57 | 1.32 | 12.62 | 109.75 | 20.25 | 100,100 | 1.7 |
5.32 | 1.32 | 12.83 | 115.75 | 20 | 100,100 | 1.8 |
1.2 | 0.25 | 33.38 | 108.95 | 11.5 | 100,100 | 2.97 |
4.49 | 0.5 | 1.88 | 109.5 | 27 | 111,001 | 3 |
5 | 0.33 | 1.88 | 109.5 | 27 | 111,001 | 3 |
3.9 | 1.32 | 12.63 | 109.75 | 20.25 | 100,100 | 3.1 |
5.9 | 1.32 | 12.87 | 115.75 | 20 | 100,100 | 3.3 |
7.77 | 20 | 1.50 | 107.1 | 11.2 | 100,223 | 3.5 |
1.2 | 0.25 | 33.38 | 108.95 | 11.5 | 110,110 | 4.4 |
1.21 | 0.25 | 33.38 | 108.95 | 11.5 | 111,111 | 5.03 |
9.45 | 20 | 1.50 | 107.1 | 11.2 | 100,100 | 5.8 |
11.42 | 1.32 | 13.58 | 114.25 | 49.5 | 100,100 | 7 |
6 | 1.32 | 12.89 | 105.75 | 22.35 | 100,100 | 7.5 |
11.2 | 1.32 | 13.51 | 114.25 | 49.5 | 100,100 | 12.6 |
3.9 | 0.33 | 12.63 | 109.75 | 20.25 | 100,100 | 13 |
14.25 | 1.32 | 13.92 | 115.25 | 24.5 | 100,100 | 13.6 |
8.04 | 0.33 | 1.07 | 107.1 | 11.2 | 111,001 | 13.9 |
16.1 | 0.33 | 1.07 | 107.1 | 11.2 | 111,001 | 13.9 |
3.57 | 0.33 | 12.63 | 109.75 | 20.25 | 100,100 | 15.2 |
12.49 | 20 | 1.50 | 107.1 | 11.2 | −1,511,112 | 16 |
3.46 | 0.25 | 1.50 | 107.1 | 11.2 | 100,110 | 16.2 |
8.4 | 0.25 | 1.50 | 107.1 | 11.2 | −15,110,112 | 16.6 |
16.01 | 20 | 33.38 | 108.95 | 11.5 | 311,110 | 18 |
20.67 | 20 | 1.50 | 107.1 | 11.2 | 111,100 | 18.5 |
8.02 | 0.25 | 1.50 | 113.5 | 11.5 | 110,001 | 18.5 |
25.03 | 20 | 1.50 | 107.1 | 11.2 | 311,110 | 19 |
4.49 | 0.33 | 1.88 | 109.5 | 27 | 111,001 | 19.4 |
1.11 | 20 | 33.38 | 108.95 | 11.5 | 100,100 | 20.5 |
1.11 | 20 | 33.38 | 108.95 | 11.5 | 110,110 | 20.5 |
1.11 | 20 | 33.38 | 108.95 | 11.5 | 111,111 | 20.5 |
10 | 20 | 17.09 | 108.95 | 11.5 | 111,110 | 21 |
6.2 | 20 | 33.38 | 113.5 | 11.5 | 311,111 | 21 |
23.88 | 20 | 1.50 | 113.5 | 11.5 | 111,110 | 21.7 |
21.42 | 20 | 1.50 | 107.1 | 11.2 | 100,312 | 22.4 |
3.14 | 20 | 1.50 | 113.5 | 11.5 | 111,111 | 23.2 |
14.49 | 20 | 17.09 | 113.5 | 11.5 | 311,110 | 24 |
14.4 | 1.32 | 13.91 | 115.25 | 24.5 | 100,100 | 24.5 |
10.83 | 20 | 17.09 | 108.95 | 11.5 | 111,100 | 25 |
12.49 | 20 | 33.38 | 113.5 | 11.5 | 111,100 | 25 |
17.1 | 20 | 1.50 | 107.1 | 11.2 | 111,113 | 25.1 |
16.36 | 20 | 1.50 | 107.1 | 11.2 | 100,001 | 25.2 |
3.12 | 20 | 17.09 | 113.5 | 11.5 | 111,111 | 26 |
13.87 | 20 | 17.09 | 113.5 | 11.5 | 110,111 | 28 |
6.61 | 15 | 15.41 | 104.1 | 19.8 | 111,003 | 28.7 |
12.7 | 1.32 | 8.59 | 111 | 33 | 110,001 | 29 |
14.02 | 0.33 | 20.96 | 138.7 | 15 | 111,111 | 29.5 |
22 | 0.33 | 20.97 | 138.7 | 15 | 111,111 | 29.5 |
12.77 | 20 | 1.50 | 107.1 | 11.2 | 100,101 | 32.7 |
8.04 | 0.33 | 1.07 | 109.75 | 17.7 | 111,001 | 35 |
16.1 | 0.33 | 1.07 | 107.1 | 11.2 | 111,001 | 36 |
12.9 | 20 | 1.50 | 107.1 | 11.2 | 111,104 | 39.6 |
8.04 | 15 | 1.07 | 107.1 | 11.2 | 111,004 | 51.6 |
3.58 | 15 | 12.35 | 108.5 | 18 | 100,100 | 51.8 |
9.49 | 20 | 13.34 | 103.5 | 21 | 111,111 | 52.7 |
6.61 | 0.33 | 15.41 | 104.1 | 19.8 | 111,002 | 56.6 |
26 | 0.33 | 1.11 | 104.1 | 19.8 | 111,001 | 57 |
References
- Olakanmi, E.O.; Cochrane, R.F.; Dalgarno, K.W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Prog. Mater. Sci. 2015, 74, 401–477. [Google Scholar] [CrossRef]
- Flower, H.M. Light alloys: Metallurgy of the light metals. Int. Mater. Rev. 1992, 37, 196. [Google Scholar] [CrossRef]
- Xu, C.L.; Jiang, Q.C. Morphologies of primary silicon in hypereutectic Al–Si alloys with melt overheating temperature and cooling rate. Mater. Sci. Eng. A 2006, 437, 451–455. [Google Scholar] [CrossRef]
- Vijeesh, V.; Prabhu, K.N. Review of Microstructure Evolution in Hypereutectic Al–Si Alloys and its Effect on Wear Properties. Trans. Indian Inst. Met. 2014, 67, 1–18. [Google Scholar]
- Xu, Y.; Deng, Y.; Casari, D.; Mathiesen, R.; Liu, X.; Li, Y. Growth kinetics of primary Si particles in hypereutectic Al-Si alloys under the influence of P inoculation: Experiments and modelling. J. Alloys Compd. 2021, 854, 155323. [Google Scholar] [CrossRef]
- Bramfitt, B.L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metall. Trans. 1970, 1, 1987–1995. [Google Scholar] [CrossRef]
- Wang, L.; Yang, L.; Zhang, D.; Xia, M.; Wang, Y.; Li, J.G. The Role of Lattice Misfit on Heterogeneous Nucleation of Pure Aluminum. Metall. Mater. Trans. A 2016, 47, 5012–5022. [Google Scholar] [CrossRef]
- Perepezko, J.; Uttormark, M. Undercooling and Nucleation during Solidification. ISIJ Int. 1995, 35, 580–588. [Google Scholar] [CrossRef] [Green Version]
- Ohashi, T.; Hiromoto, T.; Fujii, H.; Nuri, Y.; Asano, K. Effect of Oxides on Nucleation Behaviour in Supercooled Iron. Tetsu Hagane 1976, 62, 614–623. [Google Scholar] [CrossRef] [Green Version]
- Mueller, B.A.; Perepezko, J.H. The undercooling of aluminum. Metall. Mater. Trans. A 1987, 18, 1143–1150. [Google Scholar] [CrossRef]
- Kalb, J.A.; Spaepen, F.; Wuttig, M. Kinetics of crystal nucleation in undercooled droplets of Sb- and Te-based alloys used for phase change recording. J. Appl. Phys. 2005, 98, 054910. [Google Scholar] [CrossRef]
- Kelton, K.F.; Lee, G.W.; Gangopadhyay, A.K. First X-Ray Scattering Studies on Electrostatically Levitated Metallic Liquids: Demonstrated Influence of Local Icosahedral Order on the Nucleation Barrier. Phys. Rev. Lett. 2003, 90, 195504. [Google Scholar] [CrossRef] [PubMed]
- Sang, U.; Yang, M. Nucleation modes of the drop tube processed Nd70Fe20Al10 droplets. Mater. Lett. 2004, 58, 975–979. [Google Scholar]
- Battersby, S.E.; Cochrane, R.F.; Mullis, A.M. Growth velocity-undercooling relationships and microstructural evolution in undercooled Ge and dilute Ge-Fe alloys. J. Mater. Sci. 1999, 34, 2049–2056. [Google Scholar] [CrossRef]
- Jian, Z.; Kuribayashi, K.; Jie, W. Critical undercoolings for the transition from the lateral to continuous growth in undercooled silicon and germanium. Acta Mater. 2004, 52, 3323–3333. [Google Scholar] [CrossRef]
- Li, D.; Herlach, D.M. High undercooling of bulk molten silicon by containerless processing. EPL 2007, 34, 423. [Google Scholar] [CrossRef]
- Li, J.F.; Jie, W.Q.; Yang, G.C. Solidification structure formation in undercooled Fe–Ni alloy. Acta Mater. 2002, 50, 1797–1807. [Google Scholar] [CrossRef]
- Ankit Agrawal, P.; Ahmet Cecen. Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters. Integr. Mater. Manuf. Innov. 2014, 3, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Yin, H.-Q.; Zhang, C. An materials informatics approach to Ni-based single crystal superalloys lattice misfit prediction. Comput. Mater. Sci. 2018, 143, 295–300. [Google Scholar] [CrossRef]
- Meredig, B.; Agrawal, A.; Kirklin, S.; Saal, J.E.; Doak, J.W.; Thompson, A.; Zhang, K.; Choudhary, A.; Wolverton, C. Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys. Rev. B 2014, 89, 094104. [Google Scholar] [CrossRef] [Green Version]
- Javed, S.G.; Khan, A.; Majid, A. Lattice constant prediction of orthorhombic ABO3 perovskites using support vector machines. Comput. Mater. Sci. 2007, 39, 627–634. [Google Scholar] [CrossRef]
- Nakajima, K.; Hasegawa, H.; Khumkoa, S. Effect of a catalyst on heterogeneous nucleation in pure and Fe-Ni alloys. Metall. Mater. Trans. B 2003, 34, 539–547. [Google Scholar] [CrossRef]
- Hong, Z.; Hua, F.; Xing, H.; Chang, W.; Lei, J.; Long, C.; Jian, X. Dramatically Enhanced Combination of Ultimate Tensile Strength and Electric Conductivity of Alloys via Machine Learning Screening. Acta Mater. 2020, 200, 803–810. [Google Scholar]
- Pearson, K. Note on Regression and Inheritance in the Case of Two Parents. Proc. R. Soc. Lond. 1895, 58, 240–242. [Google Scholar]
- Yuan, R.; Liu, Z.; Balachandran, P.V. Accelerated Discovery of Large Electrostrains in BaTiO3-Based Piezoelectrics Using Active Learning. Adv. Mater. 2018, 30, 1702884. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Quinlan, J.R. Induction of Decision Trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Hoerl, A.E.; Kannard, R.W.; Baldwin, K.F. Ridge regression: Some simulations. Commun. Stat. 1975, 4, 105–123. [Google Scholar] [CrossRef]
- Tipping, M.E. Sparse bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1, 211–244. [Google Scholar]
- Altman, N.S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Am. Stat. 1992, 46, 175–185. [Google Scholar]
- Tibshirani, R.J. Regression Shrinkage and Selection via the LASSO. J. R. Stat. Soc. Ser. B Methodol. 1996, 73, 273–282. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V.N. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- An, S.; Liu, W.; Venkatesh, S. Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression. Pattern Recognit. 2007, 40, 2154–2162. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.l.; Gramfort, A. Scikit-learn: Machine Learning in Python. Comput. Sci. 2012, 12, 2825–2830. [Google Scholar]
- Kauwe, S.K.; Graser, J.; Vazquez, A. Machine Learning Prediction of Heat Capacity for Solid Inorganics. Integr. Mater. Manuf. Innov. 2018, 7, 43–51. [Google Scholar] [CrossRef]
- Peng, J.; Yamamoto, Y.; Brady, M.P. Uncertainty Quantification of Machine Learning Predicted Creep Property of Alumina-Forming Austenitic Alloys. JOM 2021, 73, 164–173. [Google Scholar] [CrossRef]
- Sun, W.; Zheng, Y.; Yang, K. Machine learning-assisted molecular design and efficiency prediction for high-performance organic photovoltaic materials. Sci. Adv. 2019, 5, 4275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Quantity | Mean | Minimum | Maximum | Standard Deviation |
---|---|---|---|---|
MM | 10.32 | 6.94 | 33.20 | 1.11 |
CR | 119.75 | 313.84 | 1000.00 | 0.25 |
NL | 13.22 | 12.59 | 54.44 | 1.07 |
MAR | 110.92 | 6.19 | 138.70 | 103.50 |
MMN | 21.18 | 15.25 | 65.25 | 11.20 |
NSP | - | - | - | - |
UR | 33.77 | 38.96 | 144.00 | 1.70 |
Model | MAE | RMSE | R2 | |||
---|---|---|---|---|---|---|
Train | Test | Train | Test | Train | Test | |
RIDGE | 9.824 | 12.635 | 12.735 | 15.434 | 0.882 | 0.852 |
RF | 3.457 | 10.137 | 4.962 | 12.926 | 0.982 | 0.902 |
GBDT | 1.388 | 10.723 | 2.286 | 14.632 | 0.996 | 0.871 |
XGBOOST | 0.328 | 9.23 | 1.577 | 13.551 | 0.997 | 0.891 |
Five-Fold Cross-Validation | ||||||
---|---|---|---|---|---|---|
Model | Run | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 |
RIDGE | 1 | 0.545 | 0.255 | 0.831 | 0.885 | 0.868 |
2 | 0.864 | 0.536 | 0.402 | 0.891 | 0.435 | |
RF | 1 | 0.917 | 0.976 | 0.611 | 0.935 | 0.765 |
2 | 0.729 | 0.828 | 0.922 | 0.913 | 0.933 | |
GBDT | 1 | 0.894 | 0.967 | 0.786 | 0.419 | 0.924 |
2 | 0.830 | 0.849 | 0.856 | 0.308 | 0.861 | |
XGBOOST | 1 | 0.893 | 0.914 | 0.942 | 0.329 | 0.865 |
2 | 0.800 | 0.831 | 0.634 | 0.885 | 0.880 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Wen, L.; Wang, S.; Zhang, Z.; Yin, C.; Zhou, N.; Zheng, K. The Prediction of the Undercooling Degree of As-Cast Irons and Aluminum Alloys via Machine Learning. Crystals 2021, 11, 432. https://doi.org/10.3390/cryst11040432
Chen Y, Wen L, Wang S, Zhang Z, Yin C, Zhou N, Zheng K. The Prediction of the Undercooling Degree of As-Cast Irons and Aluminum Alloys via Machine Learning. Crystals. 2021; 11(4):432. https://doi.org/10.3390/cryst11040432
Chicago/Turabian StyleChen, Yong, Litao Wen, Shuncheng Wang, Zhibo Zhang, Cuicui Yin, Nan Zhou, and Kaihong Zheng. 2021. "The Prediction of the Undercooling Degree of As-Cast Irons and Aluminum Alloys via Machine Learning" Crystals 11, no. 4: 432. https://doi.org/10.3390/cryst11040432
APA StyleChen, Y., Wen, L., Wang, S., Zhang, Z., Yin, C., Zhou, N., & Zheng, K. (2021). The Prediction of the Undercooling Degree of As-Cast Irons and Aluminum Alloys via Machine Learning. Crystals, 11(4), 432. https://doi.org/10.3390/cryst11040432