Crystal Chemistry and Structural Complexity of the Uranyl Carbonate Minerals and Synthetic Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structural Data
2.2. Graphical Representation and Anion Topologies
2.3. Complexity Calculations
3. Results
3.1. Uranyl Carbonate Minerals
3.2. Synthetic Uranyl Carbonates
3.3. Topological Analysis
3.4. Structural and Topological Complexity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alwan, A.K.; Williams, P.A. The aqueous chemistry of uranium minerals. Part 2. Minerals of the liebigite group. Mineral. Mag. 1980, 43, 665–667. [Google Scholar] [CrossRef] [Green Version]
- Clark, D.L.; Hobart, D.E.; Neu, M.P. Actinide carbonate complexes and their importance in actinide environmental chemistry. Chem. Rev. 1995, 95, 25–48. [Google Scholar] [CrossRef]
- Plášil, J. Oxidation–hydration weathering of uraninite: The current state-of-knowledge. J. Geosci. 2014, 59, 99–114. [Google Scholar] [CrossRef] [Green Version]
- Stefaniak, E.A.; Alsecz, A.; Frost, R.; Mathe, Z.; Sajo, I.E.; Torok, S.; Worobiec, A.; Van Grieken, R. Combined SEM/EDX and micro-Raman spectroscopy analysis of uranium minerals from a former uranium mine. J. Hazard Mater. 2009, 168, 416–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Driscoll, R.J.P.; Wolverson, D.; Mitchels, J.M.; Skelton, J.M.; Parker, S.C. A Raman spectroscopic study of uranyl minerals from Cornwall, UK. RSC Adv. 2014, 4, 59137–59149. [Google Scholar] [CrossRef] [Green Version]
- Teterin, Y.A.; Baev, A.S.; Bogatov, S.A. X-ray photoelectron study of samples containing reactor fuel from “lava” and products growing on it which formed at Chernobyl NPP due to the accident. J. Electron Spectrosc. Relat. Phenom. 1994, 68, 685–694. [Google Scholar] [CrossRef]
- Burakov, B.E.; Strykanova, E.E.; Anderson, E. Secondary uranium minerals on the surface of Chernobyl “Lava”. Mat. Res. Soc. Symp. Proc. 1996, 465, 1309–1311. [Google Scholar] [CrossRef]
- Lussier, A.J.; Lopez, R.A.K.; Burns, P.C. A revised and expanded structure hierarchy of natural and synthetic hexavalent uranium compounds. Can. Mineral. 2016, 54, 177–283. [Google Scholar] [CrossRef]
- Gurzhiy, V.V.; Plášil, J. Structural complexity of natural uranyl sulfates. Acta Crystallogr. 2019, B75, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The power of databases: The RRUFF project. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., Eds.; De Gruyter: Berlin, Germany, 2015; pp. 1–30. [Google Scholar]
- Goff, G.S.; Brodnax, L.F.; Cisneros, M.R.; Peper, S.M.; Field, S.E.; Scott, B.L.; Runde, W.H. First identification and thermodynamic characterization of the ternary U(VI) species, UO2(O2)(CO3)2(4-), in UO2-H2O2-K2CO3 solutions. Inorg. Chem. 2008, 47, 1984–1990. [Google Scholar] [CrossRef]
- Zehnder, R.; Peper, S.; Brian, L.; Runde, S.; Runde, W. Tetrapotassium dicarbonatodioxoperoxouranium(VI) 2.5-hydrate, K4[U(CO3)2O2(O2)]·2.5H2O. Acta Crystallogr. 2005, C61, 3–5. [Google Scholar]
- Mikhailov, Y.N.; Lobanova, G.M.; Shchelokov, R.N. X-ray structural study of the guanidinium uranyl-peroxo-dicarbonate hydrate (CN3H6)4UO2O2(CO3)2·H2O. Zh. Neorg. Khim. 1981, 26, 718–722. [Google Scholar]
- Plášil, J.; Fejfarová, K.; Dušek, M.; Škoda, R.; Rohlíček, J. Actinides in Geology, Energy, and the Environment. Revision of the symmetry and the crystal structure of čejkaite, Na4(UO2)(CO3)3. Am. Mineral. 2013, 98, 549–553. [Google Scholar] [CrossRef]
- Li, Y.; Krivovichev, S.V.; Burns, P.C. The crystal structure of Na4(UO2)(CO3)3 and its relationship to schröckingerite. Mineral. Mag. 2001, 65, 297–304. [Google Scholar] [CrossRef]
- Císařová, I.; Skála, R.; Ondruš, P.; Drábek, M. Trigonal Na4[UO2(CO3)3]. Acta Crystallogr. 2001, E37, 32–34. [Google Scholar] [CrossRef]
- Douglass, M. Tetrasodium uranyl tricarbonate, Na4UO2(CO3)3. Anal. Chem. 1956, 28, 1635. [Google Scholar] [CrossRef]
- Ondruš, P.; Skála, R.; Veselovský, F.; Sejkora, J.; Vitti, C. Čejkaite, the triclinic polymorph of Na4(UO2)(CO3)3—A new mineral from Jachymov, Czech Republic. Am. Min. 2003, 88, 686–693. [Google Scholar] [CrossRef]
- Mazzi, F.; Rinaldi, F. La struttura cristallina del K3Na(UO2)(CO3)3. Period. Mineral. 1961, 30, 1–21. [Google Scholar]
- Kubatko, K.-A.; Helean, K.B.; Navrotsky, A.; Burns, P.C. Thermodynamics of uranyl minerals: Enthalpies of formation of rutherfordine, UO2CO3, andersonite, Na2CaUO2(CO3)3(H2O)5, and grimselite, K3NaUO2(CO3)3H2O. Amer. Mineral. 2005, 90, 1284–1290. [Google Scholar] [CrossRef]
- Walenta, K. Widenmannit und Joliotit, zwei neue Uranylkarbonatmineralien aus dem Schwarzwald. Schweiz. Mineral. Petrogr. Mitt. 1976, 56, 167–185. [Google Scholar]
- Li, Y.; Burns, P. The crystal structure of synthetic grimselite, K3Na[(UO2)(CO3)3](H2O). Can. Mineral. 2001, 39, 1147–1151. [Google Scholar] [CrossRef]
- Plášil, J.; Fejfarová, K.; Skála, R.; Škoda, R.; Meisser, N.; Hloušek, J.; Císařová, I.; Dušek, M.; Veselovský, F.; Čejka, J.; et al. The crystal chemistry of the uranyl carbonate mineral grimselite, (K,Na)3Na[(UO2)(CO3)3](H2O), from Jáchymov, Czech Republic. Mineral. Mag. 2012, 76, 443–453. [Google Scholar] [CrossRef]
- Kubatko, K.A.; Burns, P.C. The Rb analogue of grimselite, Rb6Na2((UO2)(CO3)3)2 (H2O). Acta Crystallogr. Cryst. Struct. Commun. 2004, C60, 25–26. [Google Scholar] [CrossRef] [PubMed]
- Skála, R.; Ondruš, P.; Veselovský, F.; Císařová, I.; Hloušek, J. Agricolaite, a new mineral of uranium from Jáchymov, Czech Republic. Mineral. Petrol. 2011, 103, 169–175. [Google Scholar] [CrossRef]
- Anderson, A.; Chieh, C.; Irish, D.E.; Tong, J.P.K. An X-Ray crystallographic, Raman, and infrared spectral study of crystalline potassium uranyl carbonate, K4UO2(CO3)3. Can. J. Chem. 1980, 58, 1651–1658. [Google Scholar] [CrossRef]
- Han, J.-C.; Rong, S.-B.; Chen, Q.-M.; Wu, X.-R. The determination of the crystal structure of tetrapotassium uranyl tricarbonate by powder X-ray diffraction method. Chin. J. Chem. 1990, 4, 313–318. [Google Scholar]
- Chernorukov, N.G.; Mikhailov, Y.N.; Knyazev, A.V.; Kanishcheva, A.S.; Zamkovaya, E.V. Synthesis and crystal structure of rubidium uranyltricarbonate. Russ. J. Coord. Chem. 2005, 31, 364–367. [Google Scholar] [CrossRef]
- Charushnikova, I.A.; Fedoseev, A.M.; Perminov, V.P. Synthesis and Crystal Structure of Cesium Actinide(VI) Tricarbonate Complexes Cs4AnO2(CO3)3·6H2O, An(VI) = U., Np, Pu. Radiochemistry 2016, 58, 578–585. [Google Scholar] [CrossRef]
- Mereiter, K. Structure of cesium tricarbonatodioxouranate(VI) hexahydrate. Acta Crystallogr. Cryst. Struct. Commun. 1988, C44, 1175–1178. [Google Scholar] [CrossRef]
- Krivovichev, S.V.; Burns, P.C. Synthesis and crystal structure of Cs4(UO2(CO3)3). Radiochemistry 2004, 46, 12–15. [Google Scholar] [CrossRef]
- Serezhkin, V.N.; Soldatkina, M.A.; Boiko, N.V. Refinement of the crystal-structure of (NH4)4UO2(CO3)3. J. Struct. Chem. 1983, 24, 770–774. [Google Scholar] [CrossRef]
- Mereiter, K. Structure of Thallium Tricarbonatodioxouranat (VI). Acta Crystallogr. Cryst. Struct. Commun. 1986, C42, 1682–1684. [Google Scholar] [CrossRef]
- Axelrod, J.M.; Grimaldi, F.S.; Milton, C.; Murata, K.J. The uranium minerals from the Hillside mine, Yavapai County, Arizona. Am. Mineral. 1951, 36, 1–22. [Google Scholar]
- Mayer, H.; Mereiter, K. Synthetic bayleyite, Mg2[UO2(CO3)3]·18H2O: Thermochemistry, crystallography and crystal structure. Tschermaks Mineral. Petrogr. Mitt. 1986, 35, 133–146. [Google Scholar] [CrossRef]
- Mereiter, K. Synthetic swartzite, CaMg[UO2(CO3)3]·12H2O, and its strontium analogue, SrMg[UO2(CO3)3]·12H2O: Crystallography and crystal structures. Neues Jahrb. Mineral. Mon. 1986, 1986, 481–492. [Google Scholar]
- Amayri, S.; Arnold, T.; Foerstendorf, H.; Geipel, G.; Bernhard, G. Spectroscopic characterization of synthetic becquerelite, Ca[UO2)6O4(OH)6]·8H2O, and swartzite, CaMg[UO2(CO3)3]·12H2O. Can. Mineral. 2004, 42, 953–962. [Google Scholar] [CrossRef]
- Vochten, R.; Van Haverbeke, L.; Van Springel, K. Synthesis of liebigite and andersonite, and study of their thermal behavior and luminescence. Can. Mineral. 1993, 31, 167–171. [Google Scholar]
- Smith, J.L. Two new minerals—medjidite (sulphate of uranium and lime)—Liebigite (carbonate of uranium and lime). Am. J. Sci. Arts 1848, 5, 336–338. [Google Scholar]
- Mereiter, K. The crystal structure of liebigite, Ca2UO2(CO3)3·~11H2O. Tschermaks Mineral. Petrogr. Mitt. 1982, 30, 277–288. [Google Scholar] [CrossRef]
- Kampf, A.R.; Plášil, J.; Kasatkin, A.V.; Marty, J.; Čejka, J. Markeyite, a new calcium uranyl carbonate mineral from the Markey mine, San Juan County, Utah, USA. Mineral. Mag. 2018, 82, 1089–1100. [Google Scholar] [CrossRef]
- Kampf, A.R.; Olds, T.A.; Plášil, J.; Burns, P.C.; Marty, J. Natromarkeyite and pseudomarkeyite, two new calcium uranyl carbonate minerals from the Markey mine, San Juan County, Utah, USA. Mineral. Mag. 2020, 84, 753–765. [Google Scholar] [CrossRef]
- Mereiter, K. Structure of strontium tricarbonatodioxouranate(VI) octahydrate. Acta Crystallogr. Cryst. Struct. Commun. 1986, C42, 1678–1681. [Google Scholar] [CrossRef]
- Olds, T.; Sadergaski, L.; Plášil, J.; Kampf, A.; Burns, P.; Steele, I.; Marty, J.; Carlson, S.; Mills, O. Leószilárdite, the first Na,Mg-containing uranyl carbonate from the Markey Mine, San Juan County, Utah, USA. Mineral. Mag. 2017, 81, 1039–1050. [Google Scholar] [CrossRef]
- Gurzhiy, V.V.; Krzhizhanovskaya, M.G.; Izatulina, A.R.; Sigmon, G.E.; Krivovichev, S.V.; Burns, P.C. Structure refinement and thermal stability studies of the uranyl carbonate mineral Andersonite, Na2Ca[(UO2)(CO3)3]·(5+x)H2O. Minerals 2018, 8, 586. [Google Scholar] [CrossRef] [Green Version]
- Coda, A.; Della Giusta, A.; Tazzoli, V. The structure of synthetic andersonite, Na2Ca[UO2(CO3)3].xH2O (x = 5.6). Acta Cryst. 1981, B37, 1496–1500. [Google Scholar] [CrossRef]
- Mereiter, K. Neue kristallographische Daten ueber das Uranmineral Andersonit. Anz. Österr. Akad. Wiss. Mathemat. Naturwiss. Kl. 1986, 123, 39–41. [Google Scholar]
- Plášil, J.; Čejka, J. A note on the molecular water content in uranyl carbonate mineral andersonite. J. Geosci. 2015, 60, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Coda, A. Ricerche sulla struttura cristallina dell’Andersonite. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. Ser. 1963, 34, 299–304. [Google Scholar]
- Čejka, J.; Urbanec, Z.; Čejka, J., Jr. To the crystal chemistry of andersonite. Neu. Jb. Mineral. Mh. 1987, 11, 488–501. [Google Scholar]
- De Neufville, J.P.; Kasdan, A.; Chimenti, R.J.L. Selective detection of uranium by laser-induced fluorescence: A potential remote-sensing technique. 1: Optical characteristics of uranyl geologic targets. Appl. Opt. 1981, 20, 1279–1296. [Google Scholar] [CrossRef]
- Amayri, S.; Arnold, T.; Reich, T.; Foerstendorf, H.; Geipel, G.; Bernhard, G.; Massanek, A. Spectroscopic characterization of the uranium carbonate andersonite Na2Ca[UO2(CO3)3]·6H2O. Environ. Sci. Technol. 2004, 38, 6032–6036. [Google Scholar] [CrossRef]
- Frost, R.L.; Carmody, O.; Ertickson, K.L.; Weier, M.L.; Čejka, J. Molecular structure of the uranyl mineral andersonite—A Raman spectroscopic study. J. Molec. Struct. 2004, 703, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Čejka, J. To the chemistry of andersonite and thermal composition of dioxo-tricarbonatouranates. Coll. Czech. Chem. Commun. 1969, 34, 1635–1656. [Google Scholar] [CrossRef]
- Čejka, J.; Urbanec, Z. Thermal and infrared spectrum analyses of natural and synthetic andersonites. J. Therm. Anal. 1988, 33, 389–394. [Google Scholar] [CrossRef]
- Vochten, R.; van Haverbeke, L.; van Springel, K.; Blaton, N.; Peeters, M. The structure and physicochemical characteristics of a synthetic phase compositionally intermediate between liebigite and andersonite. Can. Mineral. 1994, 32, 553–561. [Google Scholar]
- Plášil, J.; Mereiter, K.; Kampf, A.R.; Hloušek, J.; Škoda, R.; Čejka, J.; Němec, I.; Ederová, J. Braunerite IMA 2015-123. CNMNC Newsletter No. 31. Mineral. Mag. 2016, 80, 692. [Google Scholar]
- Plášil, J.; Čejka, J.; Sejkora, J.; Hloušek, J.; Škoda, R.; Novák, M.; Dušek, M.; Císařová, I.; Němec, I.; Ederová, J. Línekite, K2Ca3[(UO2)(CO3)3]2.8H2O, a new uranyl carbonate mineral from Jáchymov, Czech Republic. J. Geosci. 2017, 62, 201–213. [Google Scholar] [CrossRef] [Green Version]
- Kubatko, K.-A.; Burns, P. The crystal structure of a novel uranyl tricarbonate, K2Ca3[(UO2)(CO3)3)]2(H2O)6. Can. Mineral. 2004, 42, 997–1003. [Google Scholar] [CrossRef]
- Effenberger, H.; Mereiter, K. Structure of a cubic sodium strontium magnesium tricarbonatodioxouranate(VI) hydrate. Acta Crystallogr. Cryst. Struct. Commun. 1988, C44, 1172–1175. [Google Scholar] [CrossRef]
- Olds, T.; Plášil, J.; Kampf, A.; Dal Bo, F.; Burns, P. Paddlewheelite, a New Uranyl Carbonate from the Jáchymov District, Bohemia, Czech Republic. Minerals 2018, 8, 511. [Google Scholar] [CrossRef] [Green Version]
- Plášil, J.; Hloušek, J.; Kasatkin, A.V.; Belakovskiy, D.I.; Čejka, J.; Chernyshov, D. Ježekite, Na8[(UO2)(CO3)3](SO4)2·3H2O, a new uranyl mineral from Jáchymov, Czech Republic. J. Geosci. 2015, 60, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Schrauf, A. Schröckingerit, ein neues Mineral von Joachimsthal. Tschermaks Mineral. Petrogr. Mitt. 1873, 1, 137–138. [Google Scholar]
- Jaffe, H.W.; Sherwood, A.M.; Peterson, M.J. New data on schroeckingerite. Am. Mineral. 1948, 33, 152–157. [Google Scholar]
- Smith, D.K. An X-ray crystallographic study of schroeckingerite and its dehydration product. Am. Mineral. 1959, 44, 1020–1025. [Google Scholar]
- Mereiter, K. Crystal structure and crystallographic properties of a schröckingerite from Joachimsthal. Tschermaks Mineral. Petrogr. Mitt. 1986, 35, 1–18. [Google Scholar] [CrossRef]
- Mereiter, K. The crystal structure of albrechtschraufite, MgCa4F2[(UO2)(CO3)3]2·17H2O. Acta Crystallogr. 1984, A40, 247. [Google Scholar] [CrossRef] [Green Version]
- Mereiter, K. Description and crystal structure of albrechtschaufite, MgCa4F2[UO2(CO3)3]2·17-18H2O. Mineral. Petrol. 2013, 107, 179–188. [Google Scholar] [CrossRef]
- Li, Y.; Burns, P.C. New structural arrangements in three ca uranyl carbonate compounds with multiple anionic species. J. Solid State Chem. 2002, 166, 219–228. [Google Scholar] [CrossRef]
- Plášil, J.; Škoda, R. Crystal structure of the (REE)–uranyl carbonate mineral shabaite-(Nd). J. Geosci. 2017, 62, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Deliens, M.; Piret, P. La shabaïte-(Nd), Ca(TR)2(U02)(C03)4(OH)2.6H20, nouvelle espéce minérale de Kamoto, Shaba, Zaïre. Eur. J. Mineral. 1989, 1, 85–88. [Google Scholar] [CrossRef]
- Fedosseev, A.M.; Gogolev, A.V.; Charushnikova, I.A.; Shilov, V.P. Tricarbonate complex of hexavalent Am with guanidinium: Synthesis and structural characterization of [C(NH2)3]4[AmO2(CO3)3]·2H2O, comparison with [C(NH2)3]4[AnO2(CO3)3] (An=U, Np, Pu). Radiochim. Acta 2011, 99, 679–686. [Google Scholar] [CrossRef]
- Reed, W.A.; Oliver, A.G.; Rao, L. Tetrakis(tetramethylammonium) tricarbonatodioxidouranate octahydrate. Acta Crystallogr. 2011, 67, 301–303. [Google Scholar] [CrossRef]
- Allen, P.G.; Bucher, J.J.; Clark, D.L.; Edelstein, N.M.; Ekberg, S.A.; Gohdes, J.W.; Hudson, E.A.; Kaltsoyannis, N.; Lukens, W.W.; Neu, M.P.; et al. Multinuclear NMR, Raman, EXAFS, and X ray diffraction studies of uranyl carbonate complexes in near-neutral aqueous solution. X-ray structure of (C(NH2)3)6((UO2)3(CO3)6)·6.5(H2O). Inorg. Chem. 1995, 34, 4797–4807. [Google Scholar]
- Olds, T.; Plášil, J.; Kampf, A.; Simonetti, A.; Sadergaski, L.; Chen, Y.-S.; Burns, P. Ewingite: Earth’s most complex mineral. Geology 2017, 45, 1007–1010. [Google Scholar] [CrossRef]
- Guillemin, C.; Protas, J. Ianthinite et wyartite. Bull. Société Française Minéralogie Cristallogr. 1959, 82, 80–86. [Google Scholar] [CrossRef]
- Burns, P.C.; Finch, R.J. Wyartite: Crystallographic evidence for the first pentavalent-uranium mineral. Am. Mineral. 1999, 84, 1456–1460. [Google Scholar] [CrossRef]
- Frost, R.L.; Henry, D.A.; Erickson, K. Raman spectroscopic detection of wyartite in the presence of rabejacite. J. Raman Spectrosc. 2004, 35, 255–260. [Google Scholar] [CrossRef] [Green Version]
- Hawthorne, F.C.; Finch, R.J.; Ewing, R.C. The crystal structure of dehydrated wyartite, Ca(CO3)[U5+(U6+O2)2O4(OH)](H2O)3. Can. Mineral. 2006, 44, 1379–1385. [Google Scholar] [CrossRef]
- Deliens, M.; Piret, P. La fontanite, carbonate hydraté d’uranyle et de calcium, nouvelle espèce minérale de Rabejac, Hérault, France. Eur. J. Mineral. 1992, 4, 1271–1274. [Google Scholar] [CrossRef] [Green Version]
- Hughes, K.A.; Burns, P.C. A new uranyl carbonate sheet in the crystal structure of fontanite, Ca[(UO2)3(CO3)2O2](H2O)6. Am. Mineral. 2003, 88, 962–966. [Google Scholar] [CrossRef]
- Cesbron, F.; Pierrot, R.; Verbeek, T. La roubaultite Cu2(UO2)3(OH)10·5H2O, une nouvelle espèce minérale. Bull. Société Française Minéralogie Cristallogr. 1970, 93, 550–554. [Google Scholar] [CrossRef]
- Ginderow, D.; Cesbron, F. Structure de la roubaultite Cu2(UO2)3(CO3)2O2(OH)2·4H2O. Acta Crystallogr. 1985, 41, 654–657. [Google Scholar]
- Marckwald, W. Ueber Uranerze aus Deutsch-Ostafrika. Zent. Mineral. Geol. Paläontologie 1906, 1906, 761–763. [Google Scholar]
- Christ, C.L.; Clark, J.R.; Evans, H.T., Jr. Crystal structure of rutherfordine, UO2CO3. Science 1955, 121, 472–473. [Google Scholar] [CrossRef] [PubMed]
- Frondel, C.; Meyrowitz, R. Studies of uranium minerals (XIX): Rutherfordine, diderichite, and clarkeite. Am. Mineral. 1956, 41, 127–133. [Google Scholar]
- Finch, R.J.; Cooper, M.A.; Hawthorne, F.C.; Ewing, R.C. Refinement of the crystal structure of rutherfordine. Can. Mineral. 1999, 37, 929–938. [Google Scholar]
- Plášil, J. A unique structure of uranyl-carbonate mineral sharpite: A derivative of the rutherfordine topology. Z. Krist. Cryst. Mater. 2018, 233, 579–586. [Google Scholar] [CrossRef]
- Melón, M.J. La sharpite, nouveau carbonate d’uranyle du Congo belge. Bull. Séances l’Institut R. Colonial Belg. 1938, 9, 333–336. [Google Scholar]
- Cejka, J.; Mrazek, Z.; Urbanec, Z. New data on sharpite, a calcium uranyl carbonate. Neues Jahrb. Mineral. Monatsh. 1984, 1984, 109–117. [Google Scholar]
- Elton, N.J.; Hooper, J.J. Widenmannite from Cornwall, England: The second world occurrence. Mineral. Mag. 1995, 59, 745–749. [Google Scholar] [CrossRef]
- Plášil, J.; Čejka, J.; Sejkora, J.; Škácha, P.; Goliáš, V.; Jarka, P.; Laufek, F.; Jehlička, J.; Němec, I.; Strnad, L. Widenmannite, a rare uranyl lead carbonate: Occurrence, formation and characterization. Miner. Mag. 2010, 74, 97–110. [Google Scholar] [CrossRef]
- Plášil, J.; Palatinus, L.; Rohlíček, J.; Houdková, L.; Klementová, M.; Goliáš, V.; Škácha, P. Crystal structure of lead uranyl carbonate mineral widenmannite: Precession electron-diffraction and synchrotron powder-diffraction study. Am. Mineral. 2014, 99, 276–282. [Google Scholar] [CrossRef]
- Deliens, M.; Piret, P. La kamototïte-(Y), un nouveau carbonate d’uranyle et de terres rares de Kamoto, Shaba, Zaïre. Bull. Minéralogie 1986, 109, 643–647. [Google Scholar] [CrossRef]
- Plášil, J.; Petříček, V. Crystal structure of the (REE)-uranyl carbonate mineral kamotoite-(Y). Mineral. Mag. 2017, 81, 653–660. [Google Scholar] [CrossRef]
- Deliens, M.; Piret, P. Bijvoetite et lepersonnite, carbonates hydrates d’uranyle et de terres rares de Shinkolobwe, Zaire. Can. Mineral. 1982, 22, 231–238. [Google Scholar]
- Li, Y.; Burns, P.C.; Gault, R.A. A new rare-earth element uranyl carbonate sheet in the structure of bijvoetite-(Y). Can. Mineral. 2000, 38, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Kampf, A.R.; Plášil, J.; Olds, T.A.; Nash, B.P.; Marty, J.; Belkin, H.E. Meyrowitzite, Ca(UO2)(CO3)2·5H2O, a new mineral with a novel uranyl-carbonate sheet. Am. Mineral. 2019, 104, 603–610. [Google Scholar] [CrossRef]
- Deliens, M.; Piret, P. L’astrocyanite-(Ce), Cu2(TR)2(UO2)(CO3)5(OH)2·1,5 H2O, nouvelle espèce minérale de Kamoto, Shaba, Zaïre. Eur. J. Mineral. 1990, 2, 407–411. [Google Scholar] [CrossRef]
- Vochten, R.; Deliens, M. Blatonite, UO2CO3·H2O, A new uranyl carbonate monohydrate from San Juan County, Utah. Can. Mineral. 1998, 36, 1077–1081. [Google Scholar]
- Coleman, R.G.; Ross, D.R.; Meyrowitz, R. Zellerite and metazellerite, new uranyl carbonates. Am. Mineral. 1966, 51, 1567–1578. [Google Scholar]
- Vochten, R.; Deliens, M.; Medenbach, O. Oswaldpeetersite, (UO2)2CO3(OH)2·4H2O, a new basic uranyl carbonate mineral from the Jomac uranium mine, San Juan County, Utah, U.S.A. Can. Mineral. 2001, 39, 1685–1689. [Google Scholar] [CrossRef]
- Thompson, M.E.; Weeks, A.D.; Sherwood, A.M. Rabbittite, a new uranyl carbonate from Utah. Am. Mineral. 1955, 40, 201–206. [Google Scholar]
- Deliens, M.; Piret, P. L’urancalcarite, Ca(UO2)3CO3(OH)6.3H2O, nouveau minéral de Shinkolobwe, Shaba, Zaïre. Bull. Minéralogie 1984, 107, 21–24. [Google Scholar] [CrossRef]
- Vogl, J.F. Drei neue Mineral-Vorkommen von Joachimsthal. Jahrb. Kais. Königlichen Geol. Reichsanst. 1853, 4, 220–223. [Google Scholar]
- Piret, P.; Deliens, M. New crystal data for Ca, Cu, UO2 hydrated carbonate: Voglite. J. Appl. Crystallogr. 1979, 12, 616. [Google Scholar] [CrossRef]
- Frost, R.L.; Dickfos, M.J.; Cejka, J. Raman spectroscopic study of the uranyl carbonate mineral zellerite. J. Raman Spectrosc. 2008, 39, 582–586. [Google Scholar] [CrossRef] [Green Version]
- Chiappero, P.J.; Sarp, H. Nouvelles données sur la znucalite et seconde occurrence: Le Mas d’Alary, Lodève (Hérault, France). Arch. Sci. 1993, 46, 291–301. [Google Scholar]
- Ondruš, P.; Veselovský, F.; Rybka, R. Znucalite, Zn12(UO2)Ca(CO3)3(OH)22·4H2O, a new mineral from Príbram, Czechoslovakia. Neues Jahrb. Mineral. Mon. 1990, 1990, 393–400. [Google Scholar]
- Hawthorne, F.C. Graphical enumeration of polyhedral clusters. Acta Crystallogr. 1983, A39, 724–736. [Google Scholar] [CrossRef]
- Krivovichev, S.V. Combinatorial topology of salts of inorganic oxoacids: Zero-, one- and two-dimensional units with corner-sharing between coordination polyhedra. Crystallogr. Rev. 2004, 10, 185–232. [Google Scholar] [CrossRef]
- Krivovichev, S.V. Structural Crystallography of Inorganic Oxysalts; Oxford University Press: Oxford, UK, 2008; p. 303. [Google Scholar]
- Burns, P.C.; Miller, M.L.; Ewing, R.C. U6+ minerals and inorganic phases: A comparison and hierarchy of structures. Can. Mineral. 1996, 34, 845–880. [Google Scholar]
- Burns, P.C. U6+ minerals and inorganic compounds: Insights into an expanded structural hierarchy of crystal structures. Canad. Mineral. 2005, 43, 1839–1894. [Google Scholar] [CrossRef]
- Krivovichev, S.V. Topological complexity of crystal structures: Quantitative approach. Acta Crystallogr. 2012, A68, 393–398. [Google Scholar] [CrossRef]
- Krivovichev, S.V. Structural complexity of minerals: Information storage and processing in the mineral world. Mineral. Mag. 2013, 77, 275–326. [Google Scholar] [CrossRef]
- Krivovichev, S.V. Which inorganic structures are the most complex? Angew. Chem. Int. Ed. 2014, 53, 654–661. [Google Scholar] [CrossRef]
- Krivovichev, S.V. Structural complexity of minerals and mineral parageneses: Information and its evolution in the mineral world. In Highlights in Mineralogical Crystallography; Danisi, R., Armbruster, T., Eds.; Walter de Gruyter: Berlin, Germany, 2015; pp. 31–73. [Google Scholar]
- Krivovichev, S.V. Structural complexity and configurational entropy of crystalline solids. Acta Crystallogr. 2016, B72, 274–276. [Google Scholar]
- Gurzhiy, V.V.; Tyumentseva, O.S.; Izatulina, A.R.; Krivovichev, S.V.; Tananaev, I.G. Chemically Induced Polytypic Phase Transitions in the Mg[(UO2)(TO4)2(H2O)](H2O)4 (T = S, Se) System. Inorg. Chem. 2019, 58, 14760–14768. [Google Scholar] [CrossRef]
- Gurzhiy, V.V.; Tyumentseva, O.S.; Belova, E.V.; Krivovichev, S.V. Chemically induced symmetry breaking in the crystal structure of guanidinium uranyl sulfate. Mendeleev Commun. 2019, 29, 408–410. [Google Scholar] [CrossRef]
- Kornyakov, I.V.; Kalashnikova, S.A.; Gurzhiy, V.V.; Britvin, S.N.; Belova, E.V.; Krivovichev, S.V. Synthesis, characterization and morphotropic transitions in a family of M[(UO2)(CH3COO)3](H2O)n (M = Na, K, Rb, Cs; n = 0–1.0) compounds. Z. Kristallogr. 2020, 235, 95–103. [Google Scholar] [CrossRef]
- Kornyakov, I.V.; Tyumentseva, O.S.; Krivovichev, S.V.; Gurzhiy, V.V. Dimensional evolution in hydrated K+-bearing uranyl sulfates: From 2D-sheets to 3D frameworks. Cryst. Eng. Comm. 2020, 22, 4621–4629. [Google Scholar] [CrossRef]
- Krivovichev, S.V. Ladders of information: What contributes to the structural complexity in inorganic crystals. Z. Kristallogr. 2018, 233, 155–161. [Google Scholar] [CrossRef]
- Krivovichev, V.G.; Krivovichev, S.V.; Charykova, M.V. Selenium minerals: Structural and chemical diversity and Complexity. Minerals 2019, 9, 455. [Google Scholar] [CrossRef] [Green Version]
- Tyumentseva, O.S.; Kornyakov, I.V.; Britvin, S.N.; Zolotarev, A.A.; Gurzhiy, V.V. Crystallographic insights into uranyl sulfate minerals formation: Synthesis and crystal structures of three novel cesium uranyl sulfates. Crystals 2019, 9, 660. [Google Scholar] [CrossRef] [Green Version]
- Gurzhiy, V.V.; Kuporev, I.V.; Kovrugin, V.M.; Murashko, M.N.; Kasatkin, A.V.; Plášil, J. Crystal chemistry and structural complexity of natural and synthetic uranyl selenites. Crystals 2019, 9, 639. [Google Scholar] [CrossRef] [Green Version]
- Langmuir, D. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim. Cosmochim. Acta 1978, A42, 547–569. [Google Scholar] [CrossRef]
- Gorman-Lewis, D.; Burns, P.; Fein, J. Review of uranyl mineral solubility measurements. J. Chem. Thermodyn. 2008, 40, 335–352. [Google Scholar] [CrossRef]
- Walenta, V.K. Grimselit, ein neues Kalium-NatriumUranylkarbonat aus dem Grimselgebiet (Oberhasli, Kt. Bern, Schweiz). Schweiz. Mineral. Petrogr. Mitt. 1972, 52, 93–108. [Google Scholar]
- Mereiter, K. Hemimorphy of crystals of liebigite. Naaes Jahrb. Mineral. Monatsh. 1986, 1986, 325–328. [Google Scholar]
- Larsen, E.S. The probable identity of uranothallite and liebigite. Am. Mineral. 1917, 2, 87. [Google Scholar]
- Krivovichev, S.V.; Burns, P.C. Actinide compounds containing hexavalent cations of the VI group elements (S, Se, Mo, Cr, W). In Structural Chemistry of Inorganic Actinide Compounds; Krivovichev, S.V., Burns, P.C., Tananaev, I.G., Eds.; Elsevier: Amsterdam, The Netherland, 2007; pp. 95–182. [Google Scholar]
- Shuvalov, R.R.; Burns, P.C. A monoclinic polymorph of uranyl dinitrate trihydrate, [UO2(NO3)2(H2O)2]·H2O. Acta Crystallogr. 2003, C59, 71–73. [Google Scholar]
- Thuéry, P. Uranyl Ion Complexes with Cucurbit[n]urils (n = 6, 7, and 8): A new family of uranyl-organic frameworks. Cryst. Growth Des. 2008, 8, 4132–4143. [Google Scholar] [CrossRef]
- Gurzhiy, V.V.; Kornyakov, I.V.; Tyumentseva, O.S. Uranyl nitrates: Byproducts of the synthetic experiments or key indicators of the reaction progress? Crystals 2020, 10, 1122. [Google Scholar] [CrossRef]
- Demartin, F.; Diella, V.; Donzelli, S.; Gramaccioli, C.M.; Pilati, T. The importance of accurate crystal structure determination of uranium minerals. I. Phosphuranylite KCa(H3O)3(UO2)7(PO4)4O4·8H2O. Acta Crystallogr. 1991, B47, 439–446. [Google Scholar] [CrossRef]
- Kepler, J. Harmonices Mundi Libri V; Forni: Bologna, Italy, 1619. [Google Scholar]
- Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth. Des. 2014, 14, 3576–3586. [Google Scholar] [CrossRef]
No. | Chemical Formula | Mineral Name | Sp.Gr. | a, Å/ α, ° | b, Å/ β, ° | c, Å/ γ, ° | Ref. |
---|---|---|---|---|---|---|---|
Finite Clusters | |||||||
cc0-1:2-9 | |||||||
1 | K4[(UO2(CO3)2(O2)](H2O) | P21/n | 6.9670(14)/90 | 9.2158(18)/91.511(3) | 18.052(4)/90 | [11] | |
2 | K4[(UO2(CO3)2(O2)](H2O)2.5 | P21/n | 6.9077(14)/90 | 9.2332(18)/91.310(4) | 21.809(4)/90 | [12] | |
3 | (CN3H6)4[UO2(CO3)2(O2)]·H2O | Pca21 | 15.883(1)/90 | 8.788(2)/90 | 16.155(1)/90 | [13] | |
cc0-1:3-2 | |||||||
4 | Na4(UO2)(CO3)3 | Čejkaite | Cc | 9.2919(8)/90 | 16.0991(11)/91.404(5) | 6.4436(3)/90 | [14] |
4a | Na4(UO2)(CO3)3 | P-3c | 9.3417/90 | 9.3417/90 | 12.824/120 | [15,16,17] | |
4b | Na4(UO2)(CO3)3 | Cejkaite old model | P-1 | 9.291(2)/90.73(2) | 9.292(2)/90.82(2) | 12.895(2)/120.00(1) | [18] |
5 | K3Na(UO2)(CO3)3 | P-62c | 9.29(2)/90 | 9.29(2)/90 | 8.26(2)/120 | [19] | |
6 | K3Na(UO2)(CO3)3(H2O) | Grimselite | P-62c | 9.2507(1)/90 | 9.2507(1)/90 | 8.1788(1)/120 | [20,21,22,23] |
6a | Rb6Na2((UO2)(CO3)3)2(H2O) | Rb analogue of Grimselite | P-62c | 9.4316(7)/90 | 9.4316(7)/90 | 8.3595(8)/120 | [24] |
7 | K4(UO2)(CO3)3 | Agricolaite | C2/c | 10.2380(2)/90 | 9.1930(2)/95.108(2) | 12.2110(3)/90 | [25] |
7a | K4UO2(CO3)3 | C2/c | 10.247(3)/90 | 9.202(2)/95.11(2) | 12.226(3)/90 | [26] | |
7b | K4(UO2)(CO3)3 | C2/c | 10.240(7)/90 | 9.198(4)/95.12(4) | 12.222(12)/90 | [27] | |
58 | Rb4(UO2)(CO3)3 | C2/c | 10.778(5)/90 | 9.381(2)/94.42(3) | 12.509(3)/90 | [28] | |
8 | Cs4UO2(CO3)3(H2O)6 | P21/n | 11.1764(4)/90 | 9.5703(4)/ 96.451(2) | 18.5756(7)/90 | [29] | |
8a | Cs4(UO2(CO3)3)(H2O)6 | P21/n | 18.723(3)/90 | 9.647(2)/96.84(1) | 11.297(2)/90 | [30] | |
9 | Cs4(UO2(CO3)3) | C2/c | 11.5131(9)/90 | 9.6037(8)/93.767(2) | 12.9177(10)/90 | [31] | |
10 | (NH4)4(UO2(CO3)3) | C2/c | 10.679(4)/90 | 9.373(2)/96.43(2) | 12.850(3)/90 | [32] | |
11 | Tl4((UO2)(CO3)3) | C2/c | 10.684(2)/90 | 9.309(2)/94.95(2) | 12.726(3)/90 | [33] | |
12 | Mg2(UO2)(CO3)3(H2O)18 | Bayleyite | P21/a | 26.560(3)/90 | 15.256(2)/92.90(1) | 6.505(1)/90 | [34,35] |
13 | CaMg(UO2)(CO3)3(H2O)12 | Swartzite | P21/m | 11.080(2)/90 | 14.634(2)/99.43(1) | 6.439(1)/90 | [34,36,37] |
14 | Ca2(UO2)(CO3)3(H2O)11 | Liebigite | Bba2 | 16.699(3)/90 | 17.557(3)/90 | 13.697(3)/90 | [34,38,39,40] |
15 | Ca9(UO2)4(CO3)13·28H2O | Markeyite | Pmmn | 17.9688(13) | 18.4705(6) | 10.1136(4) | [41] |
16 | Ca8(UO2)4(CO3)12·21H2O | Pseudomarkeyite | P21/m | 17.531(3) | 18.555(3) | 9.130(3)/103.95(3) | [42] |
17 | Sr2UO2(CO3)3)(H2O)8 | P21/c | 11.379(2)/90 | 11.446(2)/93.40 (1) | 25.653(4)/90 | [43] | |
18 | Na6Mg(UO2)2(CO3)6·6H2O | Leószilárdite | C2/m | 11.6093(21)/90 | 6.7843(13)/91.378(3) | 15.1058(28)/90 | [44] |
19 | Na2Ca(UO2)(CO3)3(H2O)5.3 | Andersonite | R-3m | 17.8448(4)/90 | 17.8448(4)/90 | 23.6688(6)/120 | [20,34,38,45,46,47,48,49,50,51,52,53,54,55] |
20 | Na2Ca8(UO2)4(CO3)13·27H2O | Natromarkeyite | Pmmn | 17.8820(13) | 18.3030(4) | 10.2249(3) | [42] |
21 | Ca3Na1.5(H3O)0.5(UO2(C O3)3)2(H2O)8 | Pnnm | 18.150(3)/90 | 16.866(6)/90 | 18.436(3)/90 | [56] | |
22 | K2Ca(UO2)(CO3)3·6H2O | Braunerite | P21/c | 17.6725(12)/90 | 11.6065(5)/101.780(8) | 29.673(3)/90 | [57] |
23 | K2Ca3[(UO2)(CO3)3]2·8(H2O) | Linekite | Pnnm | 17.0069(5)/90 | 18.0273(5)/90 | 18.3374(5)/90 | [58] |
23a | K2Ca3((UO2(CO3)3)2(H2O)6 | Pnnm | 17.015(2)/90 | 18.048(2)/90 | 18.394(2)/90 | [59] | |
24 | SrMg(UO2)(CO3)3(H2O)12 | Swartzite-(Sr) | P21/m | 11.216(2)/90 | 14.739(2)/99.48(1) | 6.484(1)/90 | [34,36] |
25 | Na0.79Sr1.40 Mg0.17 (UO2(C O3)3)(H2O)4.66 | Pa-3 | 20.290(3)/90 | 20.290(3)/90 | 20.290(3)/90 | [60] | |
26 | MgCa5Cu2(UO2)4(CO3)12 (H2O)33 | Paddlewheelite | Pc | 22.052(4)/90 | 17.118(3)/90.474 (2) | 19.354(3)/90 | [61] |
27 | Na8[(UO2)(CO3)3](SO4)2·3H2O | Ježekite | P-62m | 9.0664(11)/90 | 9.0664(11)/90 | 6.9110(6)/120 | [62] |
28 | NaCa3(UO2)(CO3)3 (SO4)F(H2O)10 | Schröckingerite | P-1 | 9.634(1)/91.41(1) | 9.635(1)/92.33(1) | 14.391(2)/120.26(1) | [34,63,64,65,66] |
29 | MgCa4F2[UO2(CO3)3]2 (H2O)17.29 | Albrechtschraufite | P-1 | 13.569(2)/115.82(1) | 13.419(2)/107.61(1) | 11.622(2)/92.84(1) | [67,68] |
30 | Ca5(UO2(CO3)3)2(NO3)2 (H2O)10 | P21/n | 6.5729(9)/90 | 16.517(2)/90.494(3) | 15.195(2)/90 | [69] | |
31 | Ca6(UO2(CO3)3)2Cl4(H2O)19 | P4/mbm | 16.744(2)/90 | 16.744(2)/90 | 8.136(1)/90 | [69] | |
32 | Ca12(UO2(CO3)3)4Cl8(H2O)47 | Fd-3 | 27.489(3)/90 | 27.489(3)/90 | 27.489(3)/90 | [69] | |
33 | Nd2Ca[(UO2)(CO3)3](CO3)2 (H2O)10.5 | Shabaite-(Nd) | P-1 | 8.3835(5)/90.058(3) | 9.2766(12)/89.945(4) | 31.7519(3)/90.331(4) | [70,71] |
34 | [C(NH2)3]4[UO2(CO3)3] | R3 | 12.3278(1)/90 | 12.3278(1)/90 | 11.4457(2)/120 | [72] | |
35 | (C4H12N)4[UO2(CO3)3]·8H2O | P21/n | 10.5377(18)/90 | 12.358(2)/99.343(4) | 28.533(5)/90 | [73] | |
cc0-1:2-10 | |||||||
36 | [C(NH2)3]6[(UO2)3(CO3)6] (H2O)6.5 | P-1 | 6.941(2)/95.63(2) | 14.488(2)/98.47(2) | 22.374 (2)/101.88(2) | [74] | |
Nanoclusters | |||||||
37 | Mg8Ca8(UO2)24(CO3)30O4 (OH)12(H2O)138 | Ewingite | I41/acd | 35.142(2)/90 | 35.142(2)/90 | 47.974(3)/90 | [75] |
Layers | |||||||
544234 (β-U3O8) | |||||||
38 | CaU(UO2)2(CO3)O4(OH) (H2O)7 | Wyartite | P212121 | 11.2706(8)/90 | 7.1055(5)/90 | 20.807(1)/90 | [76,77,78] |
38a | Ca(U(UO2)2(CO3)0.7O4(OH)1.6) (H2O)1.63 | Wyartite dehydrated | Pmcn | 11.2610(6)/90 | 7.0870(4)/90 | 16.8359(10)/90 | [79] |
61524232 (phosphuranylite) | |||||||
39 | Ca(UO2)3(CO3)2O2(H2O)6 | Fontanite | P21/n | 6.968(3)/90 | 17.276(7)/90.064(6) | 15.377(6)/90 | [80,81] |
61524236 (roubaultite) | |||||||
40 | Cu2(UO2)3(CO3)2O2(OH)2 (H2O)4 | Roubaultite | P-1 | 7.767(3)/92.16(4) | 6.924(3)/90.89(4) | 7.850(3)/93.48(4) | [82,83] |
6132-I (rutherfordine) | |||||||
41 | (UO2)(CO3) | Rutherfordine | Imm2 | 4.840(1)/90 | 9.273(2)/90 | 4.298(1)/90 | [20,84,85,86,87] |
42 | Ca(H2O)3[(UO2)3(CO3)3.6O0.2] | Sharpite | Cmcm | 4.9032(4) | 15.6489(11) | 22.0414(18) | [88] |
42a | Ca(UO2)6(CO3)5(OH)4·6H2O | Sharpite | Orth | 21.99(2) | 15.63(2) | 4.487(4) | [89,90] |
6132-II (widenmannite) | |||||||
43 | Pb2[(UO2)(CO3)2] | Widenmannite | Pmmn | 4.9350(7)/90 | 9.550(4)/90 | 8.871(1)/90 | [21,91,92,93] |
Layers of Miscellaneous Topology | |||||||
44 | Y2(UO2)4(CO3)3O4·14H2O | Kamotoite-(Y) | P21/n | 12.3525(5) | 12.9432 (5)/99.857(3) | 19.4409(7) | [94,95] |
45 | [(Y4.22Nd3.78)(H2O)25(UO2)16O8 (OH)8(CO3)16](H2O)14 | Bijvoetite-(Y) | B21 | 21.234(3)/90 | 12.958(2)/90.00(2) | 44.911(7)/90 | [96,97] |
46 | Ca(UO2)(CO3)2·5H2O | Meyrowitzite | P21/n | 12.376(3) | 16.0867(14)/107.679(13) | 20.1340(17) | [98] |
Minerals with Undefined Structures | |||||||
47 | Cu2(Ce,Nd,La)2(UO2)(CO3)5 (OH)2·1.5H2O | Astrocyanite-(Ce) | Hex | 14.96(2)/90 | 14.96(2)/90 | 26.86(4)/120 | [99] |
48 | (UO2)(CO3)·H2O | Blatonite | Hex or Trig | 15.79(1)/90 | 15.79(1)/90 | 23.93(3)/120 | [100] |
49 | (UO2)(CO3)·nH2O | Joliotite | Orth | 8.16 | 10.35 | 6.32 | [21] |
50 | CaGd2(UO2)24(CO3)8Si4O28· 60H2O | Lepersonnite-(Gd) | Pnnm or Pnn2 | 16.23(3)/90 | 38.74(9)/90 | 11.73(3)/90 | [96] |
51 | Ca(UO2)(CO3)2·3H2O | Metazellerite | Pbn21 or Pbnm | 9.718(5) | 18.226(9) | 4.965(4) | [101] |
52 | (UO2)2(CO3)(OH)2·4H2O | Oswaldpeetersite | P21/c | 4.1425(6) | 14.098(3)/103.62(1) | 18.374(5) | [102] |
53 | Ca3Mg3(UO2)2(CO3)6(OH)4· 18H2O | Rabbitite | Mon | 32.6(1) | 23.8(1)/~90 | 9.45(5) | [103] |
54 | Ca(UO2)3(CO3)(OH)6·3H2O | Urancalcarite | Pbnm or Pbn21, | 15.42(3) | 16.08(4) | 6.970(6) | [104] |
55 | Ca2Cu(UO2)(CO3)4·6H2O | Voglite | P21 or P21/m | 25.97 | 24.50/104.0 | 10.70 | [105,106] |
56 | Ca(UO2)(CO3)2·5H2O | Zellerite | Pmn21 or Pmnm | 11.220(15) | 19.252(16) | 4.933(16) | [101,107] |
57 | CaZn11(UO2)(CO3)3(OH)20· 4H2O | Znucalite | Orth | 10.72(1) | 25.16(1) | 6.325(4) | [108] |
57a | CaZn12(UO2)(CO3)3(OH)22· 4H2O | Znucalite | Tricl | 12.692(4)/89.08(2) | 25.096(6)/91.79(2) | 11.685(3)/90.37(3) | [109] |
No. | Formula | Topology | Complexity Parameters of the Crystal Structure | Structural Complexity of the U-C Unit | Topological Complexity of the U-C Unit | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sp. Gr. | ν | IG | IG,total | Point, Rod or Layer Sym. Gr. | ν | IG | IG,total | Point, Rod or Layer Sym. Gr. | ν | IG | IG,total | |||
Finite clusters | ||||||||||||||
1 | K4(UO2(O2)(CO3)2)(H2O) | cc0-1:2-9 | P21/n | 80 | 4.322 | 345.750 | 1 | 13 | 3.700 | 48.106 | 2mm | 13 | 2.777 | 36.101 |
2 | K4(U(CO3)2)O2(O2)(H2O)2.5 | P21/n | 100 | 4.644 | 464.390 | |||||||||
3 | (CN3H6)4[UO2(CO3)2(O2)]·H2O | Pca21 | 204 | 5.672 | 1157.175 | |||||||||
4 | Na4(UO2)(CO3)3/Čejkaite | Cc | 38 | 4.248 | 161.420 | 1 | 15 | 3.907 | 58.603 | -6m2 | 15 | 2.106 | 31.584 | |
4b * | Na4(UO2)(CO3)3/Cejkaite old model | P-1 | 76 | 5.274 | 400.840 | |||||||||
8 | Cs4UO2(CO3)3(H2O)6 | cc0-1:3-2 | P21/n | 148 | 5.209 | 771.000 | ||||||||
8a | Cs4(UO2(CO3)3)(H2O)6 | P21/n | 148 | 5.209 | 771.000 | |||||||||
12 | Mg2(UO2)(CO3)3(H2O)18/Bayleyite | P21/a | 276 | 6.123 | 1689.950 | |||||||||
14 | Ca2(UO2)(CO3)3(H2O)11/Liebigite | Bba2 | 200 | 5.664 | 1132.770 | |||||||||
16 | Ca8(UO2)4(CO3)12·21H2O/Pseudomarkeyite | P21/m | 262 | 6.148 | 1610.760 | |||||||||
17 | Sr2UO2(CO3)3)(H2O)8 | P21/c | 324 | 6.34 | 2054.110 | |||||||||
21 | Ca3Na1.5(H3O)0.5(UO2(CO3)3)2(H2O)8 | Pnnm | 484 | 6.059 | 2932.730 | |||||||||
22 | K2Ca(UO2)(CO3)3·6H2O/Braunerite | P21/c | 472 | 6.883 | 3248.610 | |||||||||
23 | K2Ca3[(UO2)(CO3)3]2·8(H2O)/Línekite | Pnnm | 474 | 6.049 | 2867.260 | |||||||||
23a | K2Ca3((UO2(CO3)3)2(H2O)6 | Pnnm | 462 | 5.99 | 2767.510 | |||||||||
25 | Na0.79Sr1.40 Mg0.17(UO2(CO3)3)(H2O)4.66 | Pa-3 | 752 | 5.048 | 3795.880 | |||||||||
26 | MgCa5Cu2(UO2)4(CO3)12(H2O)33/Paddlewheelite | Pc | 616 | 8.267 | 5092.340 | |||||||||
28 | NaCa3(UO2)(CO3)3 (SO4)F(H2O)10/Schröckingerite | P-1 | 110 | 5.781 | 635.950 | |||||||||
29 | MgCa4F2[UO2(CO3)3]2(H2O)17.29/Albrechtschraufite | P-1 | 179 | 6.489 | 1161.600 | |||||||||
30 | Ca5(UO2(CO3)3)2(NO3)2(H2O)10 | P21/n | 146 | 5.204 | 759.710 | |||||||||
33 | Nd2Ca[(UO2)(CO3)3](CO3)2(H2O)10.5/Shabaite-(Nd) | P-1 | 230 | 6.845 | 1574.460 | |||||||||
35 | (C4H12N)4[UO2(CO3)3]·8H2O | P21/n | 428 | 6.741 | 2885.348 | |||||||||
7 | K4(UO2)(CO3)3/Agricolaite | C2/c | 38 | 3.406 | 129.420 | 2 | 15 | 3.107 | 46.603 | |||||
7a | K4UO2(CO3)3 | C2/c | 38 | 3.406 | 129.420 | |||||||||
7b | K4(UO2)(CO3)3 | C2/c | 38 | 3.406 | 129.420 | |||||||||
9 | Cs4(UO2(CO3)3) | C2/c | 38 | 3.406 | 129.420 | |||||||||
10 | (NH4)4(UO2(CO3)3) | C2/c | 70 | 4.215 | 295.050 | |||||||||
11 | Tl4((UO2)(CO3)3) | C2/c | 38 | 3.406 | 129.420 | |||||||||
13 | CaMg(UO2)(CO3)3(H2O)12/Swartzite | P21/m | 106 | 4.973 | 527.160 | m | 15 | 3.240 | 48.600 | |||||
15 | Ca9(UO2)4(CO3)13·28H2O/Markeyite | Pmmn | 300 | 5.495 | 1648.650 | |||||||||
19 | Na2Ca(UO2)(CO3)3(H2O)5.3/Andersonite | R-3m | 203 | 4.461 | 905.490 | |||||||||
20 | Na2Ca8(UO2)4(CO3)13·27H2O/Natromarkeyite | Pmmn | 310 | 5.599 | 1735.600 | |||||||||
24 | SrMg(UO2)(CO3)3(H2O)12/Swartzite-(Sr) | P21/m | 106 | 4.973 | 527.160 | |||||||||
18 | Na6Mg(UO2)2(CO3)6·6H2O/Leószilárdite | C2/m | 55 | 4.363 | 239.980 | m | 15 | 3.774 | 56.610 | |||||
31 | Ca6(UO2(CO3)3)2Cl4(H2O)19 | P4/mbm | 174 | 4.282 | 745.070 | mm2 | 15 | 3.107 | 46.603 | |||||
4a | Na4(UO2)(CO3)3 | P-3c | 76 | 3.049 | 231.750 | 3 | 15 | 2.639 | 39.585 | |||||
32 | Ca12(UO2(CO3)3)4Cl8(H2O)47 | Fd-3 | 438 | 4.397 | 1925.710 | |||||||||
34 | [C(NH2)3]4[UO2(CO3)3] | R3 | 45 | 4.013 | 180.565 | |||||||||
5 | K3Na(UO2)(CO3)3 | P-62c | 38 | 2.891 | 109.870 | -6 | 15 | 2.506 | 37.584 | |||||
6 | K3Na(UO2)(CO3)3(H2O)/Grimselite | P-62c | 44 | 3.197 | 140.670 | |||||||||
6a | Rb6Na2((UO2)(CO3)3)2(H2O) | P-62c | 44 | 3.197 | 140.670 | |||||||||
27 | Na8[(UO2)(CO3)3](SO4)2·3H2O/Ježekite | P-62m | 42 | 3.498 | 146.930 | -6m2 | 15 | 2.106 | 31.584 | |||||
36 | [C(NH2)3]6[(UO2)3(CO3)6](H2O)6.5 | cc0-1:2-10 | P-1 | 225 | 6.818 | 1534.100 | 1 | 33 | 5.044 | 166.452 | -6m2 | 33 | 2.914 | 96.162 |
Nanoclusters | ||||||||||||||
37 | Mg8Ca8(UO2)24(CO3)30O4(OH)12(H2O)138/Ewingite | I41/acd | 2508 | 7.311 | 18,335.988 | -4 | 220 | 5.781 | 1271.820 | -4 | 220 | 5.781 | 1271.820 | |
Layers | ||||||||||||||
544234 (β-U3O8) | ||||||||||||||
38 | CaU(UO2)2(CO3)O4(OH)(H2O)7/Wyartite | P212121 | 156 | 5.285 | 824.52 | p21 | 40 | 4.322 | 172.880 | p2 1mn | 40 | 3.822 | 152.880 | |
38a | Ca(U(UO2)2(CO3)0.7O4(OH)1.6)(H2O)1.63 | Pmcn | 84 | 3.821 | 320.964 | p21mn | 36 | 3.614 | 130.103 | 36 | 3.614 | 130.103 | ||
61524232(phosphuranylite) | ||||||||||||||
39 | Ca(UO2)3(CO3)2O2(H2O)6/Fontanite | P21/n | 152 | 5.248 | 797.685 | p11n | 38 | 4.248 | 161.424 | cmmm | 19 | 2.880 | 54.720 | |
61524236 (roubaultite) | ||||||||||||||
40 | Cu2(UO2)3(CO3)2O2(OH)2(H2O)4/Roubaultite | P-1 | 37 | 4.236 | 156.750 | p-1 | 23 | 3.567 | 82.042 | pammm | 23 | 1.837 | 42.239 | |
6132-I (rutherfordine) | ||||||||||||||
41 | UO2)(CO3)/Rutherfordine | Imm2 | 7 | 2.236 | 15.651 | p2mm | 7 | 2.236 | 15.651 | p2mm | 7 | 2.236 | 15.651 | |
42 | Ca(H2O)3[(UO2)3(CO3)3.6O0.2]/Sharpite | Cmcm | 72 | 3.837 | 276.235 | p2/m11 | 24 | 3.335 | 80.040 | pbmmm | 24 | 3.168 | 76.032 | |
6132-II (widenmannite) | ||||||||||||||
43 | Pb2[(UO2)(CO3)2] | Pmmn | 34 | 3.382 | 114.974 | p2mm | 11 | 2.914 | 32.054 | pb2mm | 11 | 2.914 | 32.054 | |
Layers of miscellaneous topology | ||||||||||||||
44 | Y2(UO2)4(CO3)3O4·14H2O/Kamotoite-(Y) | P21/n | 282 | 6.147 | 1733.353 | p11a | 64 | 5.000 | 320.000 | pbmmm | 32 | 3.250 | 104.000 | |
45 | [(Y4.22Nd3.78)(H2O)25(UO2)16O8(OH)8(CO3)16](H2O)14/Bijvoetite-(Y) | B21 | 522 | 8.028 | 4190.567 | p1 | 68 | 6.087 | 413.916 | 34 | 3.382 | 114.988 | ||
46 | Ca(UO2)(CO3)2·5H2O/Meyrowitzite | P21/n | 320 | 6.322 | 2023.017 | p21/b | 132 | 5.044 | 665.808 | p21/b | 132 | 5.044 | 665.808 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurzhiy, V.V.; Kalashnikova, S.A.; Kuporev, I.V.; Plášil, J. Crystal Chemistry and Structural Complexity of the Uranyl Carbonate Minerals and Synthetic Compounds. Crystals 2021, 11, 704. https://doi.org/10.3390/cryst11060704
Gurzhiy VV, Kalashnikova SA, Kuporev IV, Plášil J. Crystal Chemistry and Structural Complexity of the Uranyl Carbonate Minerals and Synthetic Compounds. Crystals. 2021; 11(6):704. https://doi.org/10.3390/cryst11060704
Chicago/Turabian StyleGurzhiy, Vladislav V., Sophia A. Kalashnikova, Ivan V. Kuporev, and Jakub Plášil. 2021. "Crystal Chemistry and Structural Complexity of the Uranyl Carbonate Minerals and Synthetic Compounds" Crystals 11, no. 6: 704. https://doi.org/10.3390/cryst11060704
APA StyleGurzhiy, V. V., Kalashnikova, S. A., Kuporev, I. V., & Plášil, J. (2021). Crystal Chemistry and Structural Complexity of the Uranyl Carbonate Minerals and Synthetic Compounds. Crystals, 11(6), 704. https://doi.org/10.3390/cryst11060704