Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (85,651)

Search Parameters:
Keywords = carbonate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
916 KB  
Article
Two-Way Carbon Options Game Model of Construction Supply Chain with Cap-And-Trade
by Wen Jiang, Zhaoyi Tong, Yifan Yuan, Qingqing Yang, Jiangyan Wu and Ruixiang Li
Sustainability 2025, 17(17), 8089; https://doi.org/10.3390/su17178089 (registering DOI) - 8 Sep 2025
Abstract
As one of the main sources of global greenhouse gas emissions, the low-carbon transformation and emission reduction in the construction industry are inevitable requirements for addressing climate change. Under cap-and-trade regulations, Carbon emission rights have become a key production factor. However, the price [...] Read more.
As one of the main sources of global greenhouse gas emissions, the low-carbon transformation and emission reduction in the construction industry are inevitable requirements for addressing climate change. Under cap-and-trade regulations, Carbon emission rights have become a key production factor. However, the price of carbon emission rights is highly random. Taking the EU carbon market in 2024 as an example, the carbon price fluctuated by more than 35%, soaring from 65 euros per ton to 80 euros per ton and then falling back. Such sharp fluctuations not only increase the cost uncertainty of enterprises but also complicate the investment decisions for emission reduction. Therefore, enterprises can enhance the flexibility of carbon emission rights trading decisions through option strategies, helping them hedge against the risks of carbon price fluctuations, and at the same time improve market liquidity and risk management capabilities. Against this background, based on the carbon cap-and-trade policy, this paper introduces the two-way option strategy into the construction supply chain game model composed of general contractors and subcontractors, and studies to obtain the optimal carbon reduction volume, carbon option purchase volume, maximum expected profit of general contractors, subcontractors and profit distribution ratio. This study shows that two-way options play a crucial role in optimizing supply decision-making and emission reduction strategies. Under the decentralized model, emission reduction responsibilities are often shifted to subcontractors by the general contractor, resulting in a decline in overall mitigation effectiveness. Furthermore, appropriately lowering the carbon emission benchmark can strengthen enterprises’ incentives for emission reduction and significantly enhance the profitability of the supply chain. The study further suggests that general contractors should enhance their competitiveness by developing environmentally friendly technologies and improving their ability to reduce emissions on their own. Meanwhile, subcontractors need to actively participate in the collaborative efforts through revenue-sharing contracts. This study reveals the strategic value of two-way carbon options in construction supply chain carbon trading and provides theoretical support for the formulation of carbon market policies, contributing to the low-carbon transition of the construction supply chain. Full article
(This article belongs to the Special Issue Application of Data-Driven in Sustainable Logistics and Supply Chain)
Show Figures

Figure 1

2960 KB  
Article
Quantifying and Optimizing Vegetation Carbon Storage in Building-Attached Green Spaces for Sustainable Urban Development
by Wenjun Peng, Xinqiang Zou, Yanyan Huang and Hui Li
Sustainability 2025, 17(17), 8088; https://doi.org/10.3390/su17178088 (registering DOI) - 8 Sep 2025
Abstract
Public building-attached green spaces are increasingly important urban carbon sinks, yet their carbon sequestration potential remains poorly understood and underutilized. This study quantified vegetation carbon storage across three attached green space typologies (green square, roof garden, and sunken courtyard) at a representative public [...] Read more.
Public building-attached green spaces are increasingly important urban carbon sinks, yet their carbon sequestration potential remains poorly understood and underutilized. This study quantified vegetation carbon storage across three attached green space typologies (green square, roof garden, and sunken courtyard) at a representative public building in Wuhan, China, using field surveys and species-specific allometric equations. Total carbon storage reached 19,873.43 kg C, dominated by the green square (84.98%), followed by a roof garden (12.29%) and sunken courtyard (2.72%). Regression analysis revealed strong correlations between carbon storage and morphological traits, with diameter at breast height (DBH) showing the highest predictive power for trees (r = 0.976 for evergreen, 0.821 for deciduous), while crown diameter (CD) best predicted shrub carbon storage (r = 0.833). Plant configuration optimization strategies were developed through correlation analysis and ecological principles, including replacing low carbon sequestering species with high carbon native species, enhancing vertical stratification, and implementing multi-layered planting. These strategies increased total carbon storage by 131.5% to 45,964.00 kg C, with carbon density rising from 2.00 kg C∙m−2 to 4.63 kg C∙m−2. The findings provide a quantitative framework and practical strategies for integrating carbon management into the design of building-attached green spaces, supporting climate-responsive urban planning and advancing sustainable development goals. Full article
Show Figures

Figure 1

2266 KB  
Article
PerR Deletion Enhances Oxygen Tolerance and Butanol/Acetone Production in a Solvent-Degenerated Clostridium beijerinckii Strain DS
by Chuan Xiao, Jianxiong Dou, Naan Zhang, Laizhuang Liu, Shengjie Du, Xiancai Rao and Longjiang Yu
Fermentation 2025, 11(9), 526; https://doi.org/10.3390/fermentation11090526 (registering DOI) - 8 Sep 2025
Abstract
The industrial potential of Clostridium beijerinckii for acetone–butanol–ethanol (ABE) fermentation is limited by oxygen sensitivity and suboptimal solvent productivity. Peroxide repressor (PerR), a key negative regulator protein, is reported to suppress the oxidative stress defense system in anaerobic clostridia, leading to poor survival [...] Read more.
The industrial potential of Clostridium beijerinckii for acetone–butanol–ethanol (ABE) fermentation is limited by oxygen sensitivity and suboptimal solvent productivity. Peroxide repressor (PerR), a key negative regulator protein, is reported to suppress the oxidative stress defense system in anaerobic clostridia, leading to poor survival of bacteria under aerobic conditions. However, the regulatory mechanism underlying this phenomenon remains unclear. This study demonstrates that targeted deletion of perR (Cbei_1336) in the solvent-deficient strain C. beijerinckii DS confers robust oxygen tolerance and enhances ABE fermentation performance. The engineered perR mutant exhibited unprecedented aerobic growth under atmospheric oxygen (21% O2), achieving a (3.79 ± 0.09)-fold increase in biomass accumulation, a (2.84 ± 0.12)-fold improvement in glucose utilization efficiency, a (57.23 ± 0.01)-fold elevation in butanol production, and a (32.78 ± 0.02)-fold amplification in acetone output compared to the parental strain. Transcriptomic analysis revealed that perR knockout simultaneously upregulated oxidative defense systems and activated ABE pathway-related genes. This genetic rewiring redirected carbon flux from acidogenesis to solventogenesis, yielding a (9.64 ± 0.90)-fold increase in total solvent titer (15.61 ± 0.89 vs. 1.62 ± 0.12 g/L) and a (2.71 ± 0.04)-fold rise in volumetric productivity (0.19 ± 0.01 vs. 0.07 ± 0.01 g/L/h). Our findings establish PerR as a master regulator of both oxygen resilience and metabolic reprogramming, providing a scalable engineering strategy for industrial oxygen-tolerant ABE bioprocessing toward low-cost biobutanol production. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
4270 KB  
Article
Numerical Simulation of CO2 Injection and Production in Shale Oil Reservoirs with Radial Borehole Fracturing
by Dongyan Zhou, Haihai Dong, Xiaohui Wang, Wen Zhang, Xiaotian Li, Yang Cao, Qun Wang and Jiacheng Dai
Processes 2025, 13(9), 2873; https://doi.org/10.3390/pr13092873 (registering DOI) - 8 Sep 2025
Abstract
Shale oil is a vital strategic resource in China. Developing shale oil using CO2 not only enhances oil recovery but also contributes to achieving Chinese “dual carbon” goals. Given the challenges of insufficient number of fractures, inadequate vertical stimulation volume, and poor [...] Read more.
Shale oil is a vital strategic resource in China. Developing shale oil using CO2 not only enhances oil recovery but also contributes to achieving Chinese “dual carbon” goals. Given the challenges of insufficient number of fractures, inadequate vertical stimulation volume, and poor reservoir mobility associated with horizontal well fracturing, this study proposes a method for CO2 flooding based on radial borehole fracturing in a single well to achieve long-term carbon sequestration. To this end, a multi-component numerical model is built to analyze the production capacity of radial borehole fracturing. This study analyzed the impacts of non-Darcy flow, diffusion, and adsorption mechanisms on CO2 migration and sequestration. It also compared the applicability of continuous CO2 flooding and CO2 huff-and-puff under different matrix permeabilities. The results indicate that (1) CO2 flooding using radial borehole fracturing can achieve long-term oil production and carbon sequestration. (2) Under low permeability conditions, the liquid non-Darcy effect retards the flow of oil and CO2, while diffusion and adsorption facilitate CO2 sequestration in the reservoir. The impact on carbon sequestration is ranked as follows: non-Darcy effect > adsorption > diffusion. (3) High-permeability reservoirs are more suitable for carbon sequestration and should utilize continuous CO2 flooding. For low-permeability reservoirs (<0.001 mD), huff-and-puff should be employed to mobilize the reservoir around fractures and achieve carbon sequestration. The findings of this study are expected to provide new methods and a theoretical basis for efficient and economical carbon sequestration in shale oil reservoirs. Full article
(This article belongs to the Special Issue Advanced Strategies in Enhanced Oil Recovery: Theory and Technology)
Show Figures

Figure 1

2950 KB  
Article
Mechanical, Durability, and Environmental Impact Properties of Natural and Recycled Fiber Geopolymer with Zero Waste Approach: Alternative to Traditional Building Materials
by Haluk Görkem Alcan
Polymers 2025, 17(17), 2432; https://doi.org/10.3390/polym17172432 (registering DOI) - 8 Sep 2025
Abstract
This study evaluates the physical, mechanical, durability, and environmental properties of geopolymer mortars (GMs) produced using waste tire steel fibers (WTSFs), hemp fibers (HFs), waste marble powder (WMP), and recycled fine aggregates (RFAs). Within the scope of this study, fibers were incorporated as [...] Read more.
This study evaluates the physical, mechanical, durability, and environmental properties of geopolymer mortars (GMs) produced using waste tire steel fibers (WTSFs), hemp fibers (HFs), waste marble powder (WMP), and recycled fine aggregates (RFAs). Within the scope of this study, fibers were incorporated as single and hybrid types at 0.5% and 1% by volume. The addition of HFs generally reduced dry unit weight, as well as compressive and flexural strength but increased fracture energy by nearly three times. The addition of WTSFs improved compressive and flexural strengths by up to 42% and enhanced fracture energy by 840%. Hybrid fibers increased the strength values by 21% and the fracture energy by up to four times, demonstrating a clear synergistic effect between HFs and WTSFs in enhancing crack resistance and structural stability. In the durability tests conducted within the scope of this study, HFs burnt at 600 °C, while WTSFs showed signs of corrosion under freeze–thaw and acid conditions; however, hybrid fibers combined the benefits of both materials, resulting in an effective preservation of internal structure. The fact that the materials used in the production of GM samples were waste or recycled products reduced the total cost to 188 USD/m3, and thanks to these materials and the carbon-negative properties of HFs, CO2 emissions were reduced to 338 kg CO2/m3. The presented study demonstrates the potential of using recycled and waste materials to create sustainable building materials in the construction industry. Full article
(This article belongs to the Special Issue Sustainable Polymeric Materials in Building and Construction)
Show Figures

Graphical abstract

5969 KB  
Article
Integrated Digital Twin and BIM Approach to Minimize Environmental Loads for In-Situ Production and Yard-Stock Management of Precast Concrete Components
by Junyoung Park, Sunkuk Kim and Jeeyoung Lim
Appl. Sci. 2025, 15(17), 9846; https://doi.org/10.3390/app15179846 (registering DOI) - 8 Sep 2025
Abstract
Digital twin (DT) technology, integrated with building information modeling (BIM), enables real-time feedback and predictive analytics in construction. This study presents a BIM-enabled DT framework to optimize in situ production and yard-stock management of precast concrete (PC) components with a focus on minimizing [...] Read more.
Digital twin (DT) technology, integrated with building information modeling (BIM), enables real-time feedback and predictive analytics in construction. This study presents a BIM-enabled DT framework to optimize in situ production and yard-stock management of precast concrete (PC) components with a focus on minimizing CO2 emissions. Using Oracle Crystal Ball, scenario-based simulations revealed up to an 8.9% reduction in environmental impact. Distinct from prior research that largely emphasized cost or off-site strategies, this study uniquely addresses on-site sustainability by embedding carbon metrics into the decision-making process. The framework was validated through a large-scale logistics warehouse project that showcased its practical utility. This research contributes a replicable method for enhancing sustainability in precast construction through digital technologies. Full article
Show Figures

Figure 1

2010 KB  
Review
Next-Generation Chemical Sensors: The Convergence of Nanomaterials, Advanced Characterization, and Real-World Applications
by Abniel Machín and Francisco Márquez
Chemosensors 2025, 13(9), 345; https://doi.org/10.3390/chemosensors13090345 (registering DOI) - 8 Sep 2025
Abstract
Chemical sensors have undergone transformative advances in recent years, driven by the convergence of nanomaterials, advanced fabrication strategies, and state-of-the-art characterization methods. This review emphasizes recent developments, with particular attention to progress achieved over the past decade, and highlights the role of the [...] Read more.
Chemical sensors have undergone transformative advances in recent years, driven by the convergence of nanomaterials, advanced fabrication strategies, and state-of-the-art characterization methods. This review emphasizes recent developments, with particular attention to progress achieved over the past decade, and highlights the role of the United States as a major driver of global innovation in the field. Nanomaterials such as graphene derivatives, MXenes, carbon nanotubes, metal–organic frameworks (MOFs), and hybrid composites have enabled unprecedented analytical performance. Representative studies report detection limits down to the parts-per-billion (ppb) and even parts-per-trillion (ppt) level, with linear ranges typically spanning 10–500 ppb for volatile organic compounds (VOCs) and 0.1–100 μM for biomolecules. Response and recovery times are often below 10–30 seconds, while reproducibility frequently exceeds 90% across multiple sensing cycles. Stability has been demonstrated in platforms capable of continuous operation for weeks to months without significant drift. In parallel, additive manufacturing, device miniaturization, and flexible electronics have facilitated the integration of sensors into wearable, stretchable, and implantable platforms, extending their applications in healthcare diagnostics, environmental monitoring, food safety, and industrial process control. Advanced characterization techniques, including in situ Raman spectroscopy, X-ray Photoelectron Spectroscopy (XPS, Atomic Force Microscopy (AFM) , and high-resolution electron microscopy, have elucidated interfacial charge-transfer mechanisms, guiding rational material design and improved selectivity. Despite these achievements, challenges remain in terms of scalability, reproducibility of nanomaterial synthesis, long-term stability, and regulatory validation. Data privacy and cybersecurity also emerge as critical issues for IoT-integrated sensing networks. Looking forward, promising future directions include the integration of artificial intelligence and machine learning for real-time data interpretation, the development of biodegradable and eco-friendly materials, and the convergence of multidisciplinary approaches to ensure robust, sustainable, and socially responsible sensing platforms. Overall, nanomaterial-enabled chemical sensors are poised to become indispensable tools for advancing public health, environmental sustainability, and industrial innovation, offering a pathway toward intelligent and adaptive sensing systems. Full article
Show Figures

Graphical abstract

312 KB  
Systematic Review
Clinical Evidence of Wear Occurrence in CFR-PEEK and Metallic Osteosynthesis Implants: A Systematic Literature Review
by Remco Doodkorte, Rachèl Kuske and Jacobus Arts
Bioengineering 2025, 12(9), 965; https://doi.org/10.3390/bioengineering12090965 (registering DOI) - 8 Sep 2025
Abstract
Carbon fiber-reinforced polyetheretherketone (CFR-PEEK) as an alternative to metallics in orthopedic implants offers biomechanical and radiological advantages. However, the extent of wear particle generation and its clinical impact are unclear. This systematic review evaluates clinical evidence of wear in fracture fixation devices. A [...] Read more.
Carbon fiber-reinforced polyetheretherketone (CFR-PEEK) as an alternative to metallics in orthopedic implants offers biomechanical and radiological advantages. However, the extent of wear particle generation and its clinical impact are unclear. This systematic review evaluates clinical evidence of wear in fracture fixation devices. A systematic search was conducted to identify clinical studies reporting wear of metallic and CFR-PEEK implants used in extremities. Nineteen studies were included: three prospective cohorts, eight retrospective cohorts, one case series, and six case reports. Among 208 fixation plates, 43 were CFR-PEEK and all 93 intramedullary nails were metallic. Risk of bias ranged from low to serious, mainly due to selection bias. Wear-related complications were reported for both materials. Metallic implants showed elevated serum ion levels, metallic debris in tissues, and, in some cases, metallosis. CFR-PEEK implants showed limited evidence of carbon fiber fragments near implants. One comparative study reported higher inflammatory responses in CFR-PEEK explants, though no direct link between debris and implant removal was found. Both metallic and CFR-PEEK fracture fixation devices generate wear particles, which may induce biological responses. However, wear-related complications appear rare, especially with validated implant designs, and clinical significance of wear debris remains limited. Full article
Show Figures

Graphical abstract

5243 KB  
Article
Morphology and Wear Resistance of Laser-Clad Fe-Cr-Nb-C Alloy Coatings
by Min Chen, Haoran Zhou, Xuyang Liu, Zhongxue Feng, Xuan Xiao, Liu Weng, Yang Yang and Yan Jiang
Coatings 2025, 15(9), 1055; https://doi.org/10.3390/coatings15091055 (registering DOI) - 8 Sep 2025
Abstract
Fe-Cr-Nb-C wear-resistant alloy coatings were successfully fabricated on high-carbon forged steel via coaxial powder feeding laser cladding. The evolution of microstructure and wear resistance with varying Nb content was systematically investigated. The results indicate that appropriate NbC addition markedly modifies the distribution of [...] Read more.
Fe-Cr-Nb-C wear-resistant alloy coatings were successfully fabricated on high-carbon forged steel via coaxial powder feeding laser cladding. The evolution of microstructure and wear resistance with varying Nb content was systematically investigated. The results indicate that appropriate NbC addition markedly modifies the distribution of grain and boundary carbides. As Nb content increases from 2.5 wt% to 3.5 wt%, nanoscale rod-like NbC precipitates form uniformly along boundaries, effectively suppressing the formation of brittle Cr23C6 precipitation. Semi-coherent NbC/matrix interfaces and NbC-induced grain refinement reduce adhesive/abrasive wear, thereby improving hardness and wear resistance. At 4.5 wt% Nb, discrete micron-sized NbC particles form within the grains, yielding optimal performance. However, excessive Nb (≥5.5 wt%) causes NbC agglomeration, inducing stress concentrations and large spallation pits that deteriorate wear resistance. This work highlights NbC morphology as a key factor for tailoring coating properties. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

3487 KB  
Article
Mapping High-Resolution Carbon Emission Spatial Distribution Combined with Carbon Satellite and Muti-Source Data
by Liu Cui, Hui Yang, Maria Martin, Yina Qiao, Veit Ulrich and Alexander Zipf
Remote Sens. 2025, 17(17), 3125; https://doi.org/10.3390/rs17173125 (registering DOI) - 8 Sep 2025
Abstract
Carbon satellites, as the most direct means of observing carbon dioxide globally, offer credible and scientifically robust methods for estimating carbon emissions. To enhance the accuracy and timeliness of urban-scale carbon emission estimates, this study proposes an innovative model that integrates top-down carbon [...] Read more.
Carbon satellites, as the most direct means of observing carbon dioxide globally, offer credible and scientifically robust methods for estimating carbon emissions. To enhance the accuracy and timeliness of urban-scale carbon emission estimates, this study proposes an innovative model that integrates top-down carbon satellite data with high-resolution spatial proxies, including points of interest, road networks, and population distribution. The K-means clustering method was employed to study the relationship between carbon emissions and XCO2 anomalies. Based on this, the local adaptive carbon emission estimation model was constructed. Further, by integrating the spatial distribution and weights of proxy data, carbon emissions were reallocated to generate a high-resolution urban carbon emission map at a 1 km × 1 km resolution. Taking Urumqi, the XCO2 background concentration ranged from approximately 408 ppm to 415 ppm in 2020, and the corresponding XCO2 ranged from −1.58 ppm to 1.13 ppm. The total carbon emission estimated by the local adaptive model amounted to approximately 58.26718 million tons in 2020, close to the EDGAR dataset, with most monthly relative error within ±10%. The Pearson correlation coefficient between the ODIAC dataset and spatially redistributed carbon emission was 0.192, and their comparison showed that high carbon emission areas in the spatially redistributed carbon emission aligned closely with urban industrial parks and commercial centers, offering a more detailed representation of urban carbon emission spatial characteristics. This method contributed to exploring the potential of carbon satellites for quantitatively measuring anthropogenic emissions and offers improved insights into monitoring urban-scale carbon dioxide emissions. Full article
1486 KB  
Article
Vertical Differentiation Characteristics and Environmental Regulatory Mechanisms of Microbial Biomass Carbon and Nitrogen in Coastal Wetland Sediments from the Northern Yellow Sea
by Yue Zhang, Haiting Xu and Jian Zhou
Sustainability 2025, 17(17), 8082; https://doi.org/10.3390/su17178082 (registering DOI) - 8 Sep 2025
Abstract
Coastal saltmarsh wetlands play a pivotal role in global carbon and nitrogen cycling, yet the vertical distribution characteristics of sediment carbon and nitrogen and their regulatory mechanisms remain uncertain. Microbial biomass carbon (MBC) and nitrogen (MBN) serve as critical [...] Read more.
Coastal saltmarsh wetlands play a pivotal role in global carbon and nitrogen cycling, yet the vertical distribution characteristics of sediment carbon and nitrogen and their regulatory mechanisms remain uncertain. Microbial biomass carbon (MBC) and nitrogen (MBN) serve as critical indicators of ecosystem functioning, representing the most labile organic fractions that directly mediate biogeochemical processes in coastal wetlands. We investigated Yalu River Estuary coastal wetlands in the northern Yellow Sea. Sediment cores (0–100 cm depth) were collected and stratified into 20-cm intervals to analyse physicochemical properties and carbon–nitrogen indicators, enabling quantitative assessment of vertical distribution patterns and environmental drivers. The key findings are as follows: (1) Both microbial biomass carbon (MBC) and nitrogen (MBN) exhibited significant depth-dependent decreases, with MBC decreasing sharply by 45% (90.42 to 60.06 mg/kg) in the 40–60 cm layer and MBN decreasing by 50% (7.50 to 3.72 mg/kg) in the 80–100 cm layer. Total carbon (TC) peaked in the 40–60 cm layer (6.49 g/kg), whereas total nitrogen (TN) continuously decreased (from 0.51 (surface) to 0.24 g/kg (bottom)). (2) Depth-specific controls were identified: Surface layers (0–20 cm) were governed by tidal scouring (causing TC loss) and pH buffering; subsurface layers (20–40 cm) were constrained by moisture content (MC) and bulk density (BD), with partial mitigation by labile TC; and deeper layers (40–100 cm) were dominated by chemical factors exhibiting TN limitation and high electrical conductivity (EC). Understanding these microbial biomass dynamics is particularly crucial for predicting how coastal wetlands will respond to climate change and anthropogenic disturbances, as MBC and MBN serve as sensitive early-warning indicators of ecosystem health. Notably, MBC and MBN in northern Yellow Sea coastal wetlands are regulated primarily by physical‒biological interactions in surface sediments and chemical stressors in deeper layers, providing crucial theoretical foundations for precise wetland carbon sink assessment and sustainable ecosystem management. Full article
16665 KB  
Article
Microscopic Pore Structure Heterogeneity on the Breakthrough Pressure and Sealing Capacity of Carbonate Rocks: Insight from Monofractal and Multifractal Investigation
by Siqi Ouyang, Yiqian Qu, Yuting Cheng, Yupeng Wu and Xiuxiang Lü
Fractal Fract. 2025, 9(9), 589; https://doi.org/10.3390/fractalfract9090589 (registering DOI) - 8 Sep 2025
Abstract
Reservoirs and caprocks overlap with each other in heterogeneous carbonate rocks. The sealing capacity of caprocks and their controlling factors are not clear, which restricts the prediction, exploration, and development of carbonate hydrocarbon reservoirs. We selected core samples from the Ordovician reservoirs and [...] Read more.
Reservoirs and caprocks overlap with each other in heterogeneous carbonate rocks. The sealing capacity of caprocks and their controlling factors are not clear, which restricts the prediction, exploration, and development of carbonate hydrocarbon reservoirs. We selected core samples from the Ordovician reservoirs and caprocks in the Tarim Basin, China, for scanning electron microscopy, thin section, breakthrough pressure (BP), high-pressure mercury intrusion porosimetry (HMIP), and nitrogen adsorption method (N2GA). The experimental results show that the reservoir and caprock can be distinguished by BP. The BP of the reservoir is less than 3.0 MPa, and the BP of the caprock is less than 3.0 Mpa. We analyzed the heterogeneity characteristics and differences in reservoirs and caprocks with different lithologies from the perspectives of monofractal and multifractal. The results indicate that the differences in pore structure of grainstone, dolomite, and micrite/argillaceous limestone result in significant heterogeneity differences between samples. The correlation analysis between the fractal parameters and BP indicates that the characteristics of reservoir microporous structures have a decisive impact on BP (correlation coefficient > 0.7). The pore structure of the carbonate reservoir–caprock system exhibits self-similarity. The heterogeneity of the caprock has no significant control effect on BP (correlation coefficient < 0.3), while the higher the heterogeneity of the reservoir, the greater the BP. The sealing capacity of the caprock depends on the heterogeneity differences in pore types and pore structures between the reservoirs and caprocks. When both the reservoir and the caprock are grainstone, the micropores in the reservoirs and caprocks are dispersed but evenly distributed, and little heterogeneous differences can achieve sealing. When the lithology of reservoirs and caprocks is different, the enhancement of heterogeneity differences in micropores will improve the sealing capacity of the caprock. In summary, fractal dimension is an effective method for studying the heterogeneous structure and sealing capacity of pore–throat in carbonate caprocks. This study proposes a new perspective that the difference between the heterogeneity of micropore structures of reservoirs and caprocks affects the sealing capacity of carbonate rocks, and provides a new explanation and model for the sealing mode of carbonate rock caprocks. Full article
Show Figures

Figure 1

2865 KB  
Article
The Effect of Inorganic Pigments on the Rheological Properties of the Color Masterbatches from Polylactic Acid
by Marcela Hricova, Maria Petkova, Zita Tomcikova and Anna Ujhelyiova
Fibers 2025, 13(9), 122; https://doi.org/10.3390/fib13090122 (registering DOI) - 8 Sep 2025
Abstract
Due to the large amount of plastic waste that is currently produced, the demand for ecological solutions to this situation has been growing. Many research studies in recent years have focused on polylactic acid (PLA) as a biodegradable material made from renewable resources. [...] Read more.
Due to the large amount of plastic waste that is currently produced, the demand for ecological solutions to this situation has been growing. Many research studies in recent years have focused on polylactic acid (PLA) as a biodegradable material made from renewable resources. The individual components of biodegradable materials should comply with the EN 13432 standard, which defines the properties of a “compostable” material. Careful selection of dyes and pigments is therefore important in terms of maintaining the biodegradability of the finished products. In this article, we focus on evaluating the flow properties of color masterbatches modified with inorganic biodegradable pigments. Two types of PLA were used as polymer pigment carriers, and titanium dioxide, carbon black, and two iron oxides were used as inorganic pigments. We monitored the effect of the type and concentration of pigments on the processability and rheological properties of the prepared color PLA masterbatches. The capillary viscometer and rotary rheoviscometer were used to determine rheological properties. The flow properties of color masterbatches containing 1 and 3 wt.% inorganic pigments with two types of pure polymers, PLA6100 and PLA175, were compared. We found that the color PLA masterbatches had good processability and satisfactory rheological properties, and therefore they are usable for further processing. Full article
22219 KB  
Article
Modelling the Spatial Distribution of Soil Organic Carbon Using Machine Learning and Remote Sensing in Nevado de Toluca, Mexico
by Carmine Fusaro, Yohanna Sarria-Guzmán, Francisco Erik González-Jiménez, Manuel Saba, Oscar E. Coronado-Hernández and Carlos Castrillón-Ortíz
Geomatics 2025, 5(3), 43; https://doi.org/10.3390/geomatics5030043 (registering DOI) - 8 Sep 2025
Abstract
Accurate soil organic carbon (SOC) estimation is critical for assessing ecosystem services, carbon budgets, and informing sustainable land management, particularly in ecologically sensitive mountainous regions. This study focuses on modelling the spatial distribution of SOC within the heterogeneous volcanic landscape of the Nevado [...] Read more.
Accurate soil organic carbon (SOC) estimation is critical for assessing ecosystem services, carbon budgets, and informing sustainable land management, particularly in ecologically sensitive mountainous regions. This study focuses on modelling the spatial distribution of SOC within the heterogeneous volcanic landscape of the Nevado de Toluca (NdT), central Mexico, an area spanning 535.9 km2 and characterised by diverse land uses, altitudinal gradients, and climatic regimes. Using 29 machine learning algorithms, we evaluated the predictive capacity of three key variables: land use, elevation, and the Normalised Difference Vegetation Index (NDVI) derived from satellite imagery. Complementary analyses were performed using the Bare Soil Index (BSI) and the Modified Soil-Adjusted Vegetation Index 2 (MSAVI2) to assess their relative performance. Among the tested models, the Quadratic Support Vector Machine (SVM) using NDVI, elevation, and land use emerged as the top-performing model, achieving a coefficient of determination (R2) of 0.84, indicating excellent predictive accuracy. Notably, 14 models surpassed the R2 threshold of 0.80 when using NDVI and BSI as predictor variables, whereas MSAVI2-based models consistently underperformed (R2 < 0.78). Validation plots demonstrated strong agreement between observed and predicted SOC values, confirming the robustness of the best-performing models. This research highlights the effectiveness of integrating multispectral remote sensing indices with advanced machine learning frameworks for SOC estimation in mountainous volcanic ecosystems Full article
Show Figures

Figure 1

5917 KB  
Article
Integrated Petrophysical Analysis and Reservoir Characterization of Shaly Sands in the Srikail Gas Field, East Central Bengal Basin, Bangladesh
by Shireen Akhter and Nuno Pimentel
Eng 2025, 6(9), 234; https://doi.org/10.3390/eng6090234 (registering DOI) - 8 Sep 2025
Abstract
This study offers a comprehensive petrophysical evaluation and reservoir characterization of the Srikail Gas Field, situated on the Tripura Uplift in the east-central Bengal Basin. Utilizing well log data from four wells (Srikail-1 to Srikail-4), the analysis targets the Bhuban and Bokabil formations [...] Read more.
This study offers a comprehensive petrophysical evaluation and reservoir characterization of the Srikail Gas Field, situated on the Tripura Uplift in the east-central Bengal Basin. Utilizing well log data from four wells (Srikail-1 to Srikail-4), the analysis targets the Bhuban and Bokabil formations of the Surma Group. Standard log suites, including gamma ray, spontaneous potential, caliper, resistivity, neutron, density, and sonic logs, were interpreted using both manual techniques and digital analysis through software. Key petrophysical properties, including shale volume, effective porosity, fluid saturations, permeability, and bulk volume of water, were estimated using a combination of empirical modeling and automated interpretation workflows. Cross-plot methodologies were applied to assist in reservoir evaluation. The study integrated both qualitative and quantitative approaches to characterize each reservoir unit in detail. Results demonstrate significant heterogeneities in reservoir quality across the field. While some intervals exhibit favorable properties suitable for commercial gas production, others are characterized by high carbonate content, poor porosity, and very low permeability (Sand Cwith.05 to 0.08 mD), indicative of tight to semi-conventional reservoirs. The most productive zones, identified as the D sands, are cleaner sands with excellent permeability (102 mD to 355 mD). In contrast, deeper intervals generally exhibit tighter characteristics, with DST-derived permeability values ranging from 0.6 to 0.01 mD. The study recommends integrating core analysis, advanced petrophysical modeling, and 3D seismic interpretation with well log data to enhance reservoir delineation in the Srikail Gas Field. This combined approach would reduce uncertainties, improve input parameter accuracy, and offer a more comprehensive understanding of the Bhuban Formation’s heterogeneity, ultimately supporting more effective reservoir evaluation and hydrocarbon recovery planning. Full article
Back to TopTop