GaInP/GaAs/poly-Si Multi-Junction Solar Cells by in Metal Balls Bonding
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Geisz, J.F.; Steiner, M.A.; Jain, N.; Schulte, K.L.; France, R.M.; McMahon, W.E.; Perl, E.E.; Friedman, D.J. Building a Six-Junction Inverted Metamorphic Concentrator Solar Cell. IEEE J. Photovolt. 2018, 8, 626–632. [Google Scholar] [CrossRef]
- Geisz, J.F.; France, R.M.; Schulte, K.L.; Steiner, M.A.; Norman, A.G.; Guthrey, H.L.; Young, M.R.; Song, T.; Moriarty, T. Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nat. Energy 2020, 5, 326–335. [Google Scholar] [CrossRef]
- Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D. Solar cell efficiency tables (version 44). Prog. Photovolt. Res. Appl. 2014, 22, 701–710. [Google Scholar] [CrossRef]
- Green, M.A.; Hishikawa, Y.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Yoshita, M.; Ho-Baillie, A.W. Solar cell efficiency tables (Version 53). Prog. Photovolt. Res. Appl. 2019, 27, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Saif, O.; Abouelatta, M.; Shaker, A.; Elsaid, M.K. On the optimization of InGaP/GaAs/InGaAs triple-junction solar cell. IOP Conf. Ser. Mater. Sci. Eng. 2018, 446, 012010. [Google Scholar] [CrossRef]
- Archer, M.J.; Law, D.C.; Mesropian, S.; Boca, A.; Haddad, M.; Ladous, C.; King, R.R.; Atwater, H.A. GaInP/GaAs dual junction solar cells on Ge/Si epitaxial templates. Appl. Phys. Lett. 2008, 92, 103503. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Diaz, M.; Conrad, B.; Zhao, X.; Li, D.; Soeriyadi, A.; Gerger, A.; Lochtefeld, A.; Ebert, C.; Perez-Wurfl, I.; et al. Material and Device Improvement of GaAsP Top Solar Cells for GaAsP/SiGe Tandem Solar Cells Grown on Si Substrates. IEEE J. Photovolt. 2015, 5, 1800–1804. [Google Scholar] [CrossRef]
- Grassman, T.J.; Chmielewski, D.J.; Carnevale, S.D.; Carlin, J.A.; Ringel, S.A. GaAs0.75P0.25/Si Dual-Junction Solar Cells Grown by MBE and MOCVD. IEEE J. Photovolt. 2016, 6, 326–331. [Google Scholar] [CrossRef]
- Yaung, K.N.; Vaisman, M.; Lang, J.; Lee, M.L. GaAsP solar cells on GaP/Si with low threading dislocation density. Appl. Phys. Lett. 2016, 109, 032107. [Google Scholar] [CrossRef]
- France, R.M.; Dimroth, F.; Grassman, T.J.; King, R.R. Metamorphic epitaxy for multijunction solar cells. MRS Bull. 2016, 41, 202–209. [Google Scholar] [CrossRef]
- Chiu, P.; Law, D.; Woo, R.; Singer, S.; Bhusari, D.; Hong, W.; Zakaria, A.; Boisvert, J.; Mesropian, S.; King, R.; et al. 35.8% space and 38.8% terrestrial 5J direct bonded cells. In Proceedings of the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014; pp. 11–13. [Google Scholar]
- Dimroth, F.; Tibbits, T.N.D.; Niemeyer, M.; Predan, F.; Beutel, P.; Karcher, C.; Oliva, E.; Siefer, G.; Lackner, D.; Fus-Kailuweit, P.; et al. Four-Junction Wafer-Bonded Concentrator Solar Cells. IEEE J. Photovolt. 2016, 6, 343–349. [Google Scholar] [CrossRef]
- Essig, S.; Allebé, C.; Remo, T.; Geisz, J.F.; Steiner, M.A.; Horowitz, K.; Barraud, L.; Ward, J.S.; Schnabel, M.; Descoeudres, A.; et al. Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nat. Energy 2017, 2, 17144. [Google Scholar] [CrossRef]
- Akiyama, M.; Kawarada, Y.; Kaminishi, K. Growth of GaAs on Si by MOVCD. J. Cryst. Growth 1984, 68, 21–26. [Google Scholar] [CrossRef]
- Tanabe, K.; Watanabe, K.; Arakawa, Y. III-V/Si hybrid photonic devices by direct fusion bonding. Sci. Rep. 2012, 2, 349. [Google Scholar] [CrossRef]
- Essig, S.; Benick, J.; Schachtner, M.; Wekkeli, A.; Hermle, M.; Dimroth, F. Wafer-Bonded GaInP/GaAs//Si Solar Cells With 30% Efficiency Under Concentrated Sunlight. IEEE J. Photovolt. 2015, 5, 977–981. [Google Scholar] [CrossRef]
- Kao, Y.-C.; Chou, H.-M.; Hsu, S.-C.; Lin, A.; Lin, C.-C.; Shih, Z.-H.; Chang, C.-L.; Hong, H.-F.; Horng, R.-H. Performance comparison of III–V//Si and III–V//InGaAs multi-junction solar cells fabricated by the combination of mechanical stacking and wire bonding. Sci. Rep. 2019, 9, 4308. [Google Scholar] [CrossRef] [PubMed]
- Essig, S.; Ward, S.; Steiner, M.A.; Friedman, D.J.; Geisz, J.F.; Stradins, P.; Young, D.L. Progress Towards a 30% Efficient GaInP/Si Tandem Solar Cell. Energy Procedia 2015, 77, 464–469. [Google Scholar] [CrossRef] [Green Version]
- Gee, J.M.; Virshup, G.F. A 31%-efficient GaAs/silicon mechanically stacked, multijunction concentrator solar cell. In Proceedings of the Twentieth IEEE Photovoltaic Specialists Conference, Las Vegas, NV, USA, 26–30 September 1988; pp. 754–758. [Google Scholar]
- Yang, J.; Peng, Z.; Cheong, D.; Kleiman, R. III-V on Silicon Multi-Junction Solar Cell with 25% 1-Sun Efficiency via Direct Metal Interconnect and Areal Current Matching. In Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt, Germany, 24–28 September 2012; pp. 160–163. [Google Scholar]
- Soga, T.; Kato, T.; Yang, M.; Umeno, M.; Jimbo, T. High efficiency AlGaAs/Si monolithic tandem solar cell grown by metalorganic chemical vapor deposition. J. Appl. Phys. 1995, 78, 4196–4199. [Google Scholar] [CrossRef]
- Takamoto, T.; Ikeda, E.; Kurita, H.; Ohmori, M. Over 30% efficient InGaP/GaAs tandem solar cells. Appl. Phys. Lett. 1997, 70, 381–383. [Google Scholar] [CrossRef]
- Yang, J.; Peng, Z.; Cheong, D.; Kleiman, R. Fabrication of High-Efficiency III–V on Silicon Multijunction Solar Cells by Direct Metal Interconnect. IEEE J. Photovolt. 2014, 4, 1149–1155. [Google Scholar] [CrossRef]
- Tayagaki, T.; Makita, K.; Tachibana, T.; Mizuno, H.; Oshima, R.; Takato, H.; Sugaya, T. Three-Terminal Tandem Solar Cells With a Back-Contact-Type Bottom Cell Bonded Using Conductive Metal Nanoparticle Arrays. IEEE J. Photovolt. 2020, 10, 358–362. [Google Scholar] [CrossRef]
- Kuphal, E. Phase diagrams of InGaAsP, InGaAs and InP lattice-matched to (100) InP. J. Cryst. Growth 1984, 67, 441–457. [Google Scholar] [CrossRef]
- Lee, C.; Yu, A.; Yan, L.; Wang, H.; He, J.H.; Zhang, Q.X.; Lau, J.H. Characterization of intermediate In/Ag layers of low temperature fluxless solder based wafer bonding for MEMS packaging. Sens. Actuators A Phys. 2009, 154, 85–91. [Google Scholar] [CrossRef]
- Horng, R.-H.; Lu, Y.-A.; Wuu, D.-S. Light Extraction Study on Thin-Film GaN Light-Emitting Diodes With Electrodes Covering by Wafer Bonding and Textured Surfaces. IEEE Trans. Electron Devices 2010, 57, 2651–2654. [Google Scholar] [CrossRef]
- Horng, R.-H.; Shen, K.-C.; Kuo, Y.-W.; Wuu, D.-S. GaN light emitting diodes with wing-type imbedded contacts. Opt. Express 2012, 21, A1–A6. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, H.; Makita, K.; Matsubara, K. Electrical and optical interconnection for mechanically stacked multi-junction solar cells mediated by metal nanoparticle arrays. Appl. Phys. Lett. 2012, 101, 191111. [Google Scholar] [CrossRef]
- Yablonovitch, E.; Hwang, D.M.; Gmitter, T.J.; Florez, L.T.; Harbison, J.P. Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates. Appl. Phys. Lett. 1990, 56, 2419–2421. [Google Scholar] [CrossRef]
- Meitl, M.A.; Zhu, Z.; Kumar, V.; Lee, K.J.; Feng, X.; Huang, Y.Y.; Adesida, I.; Nuzzo, R.G.; Rogers, J.A. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 2005, 5, 33–38. [Google Scholar] [CrossRef]
- Baba, M.; Makita, K.; Mizuno, H.; Takato, H.; Sugaya, T.; Yamada, N. Effect of Series Resistances on Conversion Efficiency of GaAs/Si Tandem Solar Cells With Areal Current-Matching Technique. IEEE J. Photovolt. 2018, 8, 654–660. [Google Scholar] [CrossRef]
- Wu, F.-L.; Ou, S.-L.; Horng, R.-H.; Kao, Y.-C. Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications. Sol. Energy Mater. Sol. Cells 2014, 122, 233–240. [Google Scholar] [CrossRef]
- Makita, K.; Mizuno, H.; Tayagaki, T.; Aihara, T.; Oshima, R.; Shoji, Y.; Sai, H.; Takato, H.; Müller, R.; Beutel, P.; et al. III-V//Si multijunction solar cells with 30% efficiency using smart stack technology with Pd nanoparticle array. Prog. Photovolt. Res. Appl. 2019, 28, 16–24. [Google Scholar] [CrossRef]
Equipments | Fabrication | Measurement |
---|---|---|
MOCVD | DJ solar cell structure growth | |
Photolithography | Pattern Fabrication | |
E-Gun Deposition | Electrode, ARC deposition | |
Wafer Bonding System | Stack Bonding | |
N&k analyzer | Tansmittance and Reflectance | |
Solar Simulator | J–V of Solar cells |
Type (@ One Sun) | Voc (V) | Jsc (mA/cm2) | FF (%) | η (%) |
---|---|---|---|---|
Poly-Si solar cell | 0.54 | 23.39 | 51.15 | 6.46 |
DJ solar cell | 2.18 | 13.03 | 80.00 | 22.72 |
TJ solar cell | 2.68 | 12.39 | 73.79 | 24.50 |
Type | Rs (Ω) | Rp (Ω) |
---|---|---|
Poly-Si solar cell | 653 | 976 |
GaInP/GaAs DJ solar cell | 992 | 57,142 |
GaInP/GaAs/poly-Si solar cell | 1889 | 52,356 |
Type | Device Structure | Best Efficiency |
---|---|---|
Epitaxial Growth | 6J III-V solar cells | 39.2% (AM1.5g) (2020) [2] |
Palladium nanoparticles | GaAs/Si | 13.5% (2018) [33] |
Palladium nanoparticles | TJ GaInP/AlGaAs/Si | 30.8% (2020) [34] |
Two-terminal connect | TJ GaInP/GaAs//Si | 27.31% (2019) [18] |
Two-terminal connect | TJ GaInP/GaAs//InGaAs | 26.95% (2019) [18] |
In metal balls | TJ GaInP/GaAs/poly-Si | 24.5% (this work) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horng, R.-H.; Kao, Y.-C.; Sood, A.; Liu, P.-L.; Wang, W.-C.; Teseng, Y.-J. GaInP/GaAs/poly-Si Multi-Junction Solar Cells by in Metal Balls Bonding. Crystals 2021, 11, 726. https://doi.org/10.3390/cryst11070726
Horng R-H, Kao Y-C, Sood A, Liu P-L, Wang W-C, Teseng Y-J. GaInP/GaAs/poly-Si Multi-Junction Solar Cells by in Metal Balls Bonding. Crystals. 2021; 11(7):726. https://doi.org/10.3390/cryst11070726
Chicago/Turabian StyleHorng, Ray-Hua, Yu-Cheng Kao, Apoorva Sood, Po-Liang Liu, Wei-Cheng Wang, and Yen-Jui Teseng. 2021. "GaInP/GaAs/poly-Si Multi-Junction Solar Cells by in Metal Balls Bonding" Crystals 11, no. 7: 726. https://doi.org/10.3390/cryst11070726
APA StyleHorng, R. -H., Kao, Y. -C., Sood, A., Liu, P. -L., Wang, W. -C., & Teseng, Y. -J. (2021). GaInP/GaAs/poly-Si Multi-Junction Solar Cells by in Metal Balls Bonding. Crystals, 11(7), 726. https://doi.org/10.3390/cryst11070726