Tetrabromoethane as σ-Hole Donor toward Bromide Ligands: Halogen Bonding between C2H2Br4 and Bromide Dialkylcyanamide Platinum(II) Complexes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Complex Trans-[PtBr2(NCN(CH2)5)2]
2.2. Crystallization
2.3. Analytic Methods
2.4. X-ray Structure Determination and Refinement
2.5. Computational Details
3. Results and Discussion
3.1. Electrostatic Surface Potentials
3.2. Single-Crystal X-ray Diffraction Data for Solvates
3.3. Theoretical Consideration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desiraju, G.R.; Ho, P.S.; Kloo, L.; Legon, A.C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K. Definition of the halogen bond (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85, 1711–1713. [Google Scholar] [CrossRef]
- Berger, G.; Frangville, P.; Meyer, F. Halogen bonding for molecular recognition: New developments in materials and biological sciences. Chem. Commun. 2020, 56, 4970–4981. [Google Scholar] [CrossRef]
- Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The Halogen Bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.; Tothadi, S.; Desiraju, G.R. Halogen bonds in crystal engineering: Like hydrogen bonds yet different. Acc. Chem. Res. 2014, 47, 2514–2524. [Google Scholar] [CrossRef]
- Politzer, P.; Lane, P.; Concha, M.C.; Ma, Y.; Murray, J.S. An overview of halogen bonding. J. Mol. Model. 2007, 13, 305–311. [Google Scholar] [CrossRef]
- Cavallo, G.; Metrangolo, P.; Pilati, T.; Resnati, G.; Sansotera, M.; Terraneo, G. Halogen bonding: A general route in anion recognition and coordination. Chem. Soc. Rev. 2010, 39, 3772–3783. [Google Scholar] [CrossRef]
- Nemec, V.; Lisac, K.; Bedeković, N.; Fotović, L.; Stilinović, V.; Cinčić, D. Crystal engineering strategies towards halogen-bonded metal–organic multi-component solids: Salts, cocrystals and salt cocrystals. CrystEngComm 2021, 23, 3063–3083. [Google Scholar] [CrossRef]
- Brammer, L.; Mínguez Espallargas, G.; Libri, S. Combining metals with halogen bonds. CrystEngComm 2008, 10, 1712–1727. [Google Scholar] [CrossRef]
- Bertani, R.; Sgarbossa, P.; Venzo, A.; Lelj, F.; Amati, M.; Resnati, G.; Pilati, T.; Metrangolo, P.; Terraneo, G. Halogen bonding in metal–organic–supramolecular networks. Coord. Chem. Rev. 2010, 254, 677–695. [Google Scholar] [CrossRef]
- Li, B.; Zang, S.-Q.; Wang, L.-Y.; Mak, T.C.W. Halogen bonding: A powerful, emerging tool for constructing high-dimensional metal-containing supramolecular networks. Coord. Chem. Rev. 2016, 308, 1–21. [Google Scholar] [CrossRef]
- Farina, A.; Meille, S.V.; Messina, M.T.; Metrangolo, P.; Resnati, G.; Vecchio, G. Resolution of Racemic 1,2-Dibromohexafluoropropane through Halogen-Bonded Supramolecular Helices. Angew. Chem. Int. Ed. 1999, 38, 2433–2436. [Google Scholar] [CrossRef]
- Rosokha, S.V.; Stern, C.L.; Ritzert, J.T. Experimental and computational probes of the nature of halogen bonding: Complexes of bromine-containing molecules with bromide anions. Chem. A Eur. J. 2013, 19, 8774–8788. [Google Scholar] [CrossRef] [PubMed]
- Rosokha, S.V.; Traversa, A. From charge transfer to electron transfer in halogen-bonded complexes of electrophilic bromocarbons with halide anions. Phys. Chem. Chem. Phys. 2015, 17, 4989–4999. [Google Scholar] [CrossRef] [PubMed]
- Kashina, M.V.; Kinzhalov, M.A.; Smirnov, A.S.; Ivanov, D.M.; Novikov, A.S.; Kukushkin, V.Y. Dihalomethanes as bent bifunctional XB/XB-donating building blocks for construction of metal-involving halogen bonded hexagons. Chem. Asian J. 2019, 14, 3915–3920. [Google Scholar] [CrossRef]
- Ivanov, D.M.; Novikov, A.S.; Starova, G.L.; Haukka, M.; Kukushkin, V.Y. A family of heterotetrameric clusters of chloride species and halomethanes held by two halogen and two hydrogen bonds. CrystEngComm 2016, 18, 5278–5286. [Google Scholar] [CrossRef] [Green Version]
- Rosokha, S.V.; Vinakos, M.K. Hybrid network formation via halogen bonding of the neutral bromo-substituted organic molecules with anionic metal–bromide complexes. Cryst. Growth Des. 2012, 12, 4149–4156. [Google Scholar] [CrossRef]
- Baykov, S.V.; Dabranskaya, U.; Ivanov, D.M.; Novikov, A.S.; Boyarskiy, V.P. Pt/Pd and I/Br Isostructural Exchange Provides Formation of C–I···Pd, C–Br···Pt, and C–Br···Pd Metal-Involving Halogen Bonding. Cryst. Growth Des. 2018, 18, 5973–5980. [Google Scholar] [CrossRef]
- Dabranskaya, U.; Ivanov, D.M.; Novikov, A.S.; Matveychuk, Y.V.; Bokach, N.A.; Kukushkin, V.Y. Metal-Involving Bifurcated Halogen Bonding C–Br···η2(Cl–Pt). Cryst. Growth Des. 2019, 19, 1364–1376. [Google Scholar] [CrossRef]
- Rosokha, S.V.; Lu, J.; Rosokha, T.Y.; Kochi, J.K. Halogen-bonded assembly of hybrid inorganic/organic 3D-networks from dibromocuprate salts and tetrabromomethane. Chem. Commun. 2007, 3383–3385. [Google Scholar] [CrossRef]
- Fuller, R.O.; Griffith, C.S.; Koutsantonis, G.A.; Lapere, K.M.; Skelton, B.W.; Spackman, M.A.; White, A.H.; Wild, D.A. Supramolecular interactions between hexabromoethane and cyclopentadienyl ruthenium bromides: Halogen bonding or electrostatic organisation? CrystEngComm 2012, 14, 804–811. [Google Scholar] [CrossRef]
- Nudnova, E.A.; Potapov, A.S.; Khlebnikov, A.I.; Ogorodnikov, V.D. Synthesis of ditopic ligands containing bis(1H-pyrazol-1-yl)-methane fragments. Russ. J. Org. Chem. 2007, 43, 1698–1702. [Google Scholar] [CrossRef]
- Krajenta, A.; Rozanski, A. Physical state of the amorphous phase of polypropylene-influence on thermo-mechanical properties. Polymer 2015, 70, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Sünkel, K.; Bernhartzeder, S. Coordination chemistry of perhalogenated cyclopentadienes and alkynes. XXVIII [1] new high-yield synthesis of monobromoferrocene and simplified procedure for the synthesis of pentabromoferrocene. Molecular structures of 1,2,3-tribromoferrocene and 1,2,3,4,5-pentabromoferrocene. J. Organomet. Chem. 2011, 696, 1536–1540. [Google Scholar] [CrossRef]
- Butler, I.R.; Woldt, B.; Oh, M.-Z.; Williams, D.J. Ferrocene pincer ligands made easy. Inorg. Chem. Commun. 2006, 9, 1255–1258. [Google Scholar] [CrossRef]
- Cowie, B.E.; Emslie, D.J.H. Platinum Complexes of a Borane-Appended Analogue of 1,1′-Bis(diphenylphosphino)ferrocene: Flexible Borane Coordination Modes and in situ Vinylborane Formation. Chem. A Eur. J. 2014, 20, 16899–16912. [Google Scholar] [CrossRef]
- Inkpen, M.S.; Du, S.; Driver, M.; Albrecht, T.; Long, N.J. Oxidative purification of halogenated ferrocenes. Dalton Trans. 2013, 42, 2813–2816. [Google Scholar] [CrossRef]
- Shafir, A.; Power, M.P.; Whitener, G.D.; Arnold, J. Synthesis, structure and properties of 1,1′-diamino- and 1,1′-diazidoferrocene. Organometallics 2000, 19, 3978–3982. [Google Scholar] [CrossRef]
- Fulton, J.D. XXIX.—Action of acetylene tetrabromide on organic bases. J. Chem. Soc. 1926, 129, 197–199. [Google Scholar] [CrossRef]
- Ivanov, D.M.; Novikov, A.S.; Ananyev, I.V.; Kirina, Y.V.; Kukushkin, V.Y. Halogen bonding between metal centers and halocarbons. Chem. Commun. 2016, 52, 5565–5568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G. SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G. A short history of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef]
- Pollak, P.; Weigend, F. Segmented contracted error-consistent basis sets of double- and triple-ζ valence quality for one- and two-component relativistic all-electron calculations. J. Chem. Theory Comput. 2017, 13, 3696–3705. [Google Scholar] [CrossRef]
- Frish, M.J.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; et al. Gaussian09W. 2009. Available online: http://www.gaussian.com/ (accessed on 30 December 2013).
- Scrocco, E.; Tomasi, J. The Electrostatic Molecular Potential as a Tool for the Interpretation of Molecular Properties; Springer: Berlin/Heidelberg, Germany, 1973; Volume 42, pp. 95–170. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Perrin, C.L. Atomic size dependence of Bader electron populations: Significance for questions of resonance stabilization. J. Am. Chem. Soc. 1991, 113, 2865–2868. [Google Scholar] [CrossRef]
- Toikka, Y.N.; Mikherdov, A.S.; Ivanov, D.M.; Mooibroek, T.J.; Bokach, N.A.; Kukushkin, V.Y. Cyanamides as π-hole donor components of structure-directing (cyanamide)···arene noncovalent interactions. Cryst. Growth Des. 2020, 20, 4783–4793. [Google Scholar] [CrossRef]
- Eliseeva, A.A.; Ivanov, D.M.; Rozhkov, A.V.; Ananyev, I.V.; Frontera, A.; Kukushkin, V.Y. Bifurcated Halogen Bonding Involving Two Rhodium(I) Centers as an Integrated σ-Hole Acceptor. JACS Au 2021, 1, 354–361. [Google Scholar] [CrossRef]
- Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Metrangolo, P.; Resnati, G. Type II halogen…halogen contacts are halogen bonds. IUCrJ 2014, 1, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Tupikina, E.Y.; Bodensteiner, M.; Tolstoy, P.M.; Denisov, G.S.; Shenderovich, I.G. P═O Moiety as an Ambidextrous Hydrogen Bond Acceptor. J. Phys. Chem. C 2018, 122, 1711–1720. [Google Scholar] [CrossRef]
- Bader, R.F.W.; Nguyen-Dang, T.T. Quantum Theory of Atoms in Molecules–Dalton Revisited. In Advances in Quantum Chemistry; Löwdin, P.-O., Ed.; Academic Press: Cambridge, MA, USA, 1981; Volume 14, pp. 63–124. [Google Scholar]
- Bader, R.F.W. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Johnson, E.R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D.; Edgecombe, K.E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397–5403. [Google Scholar] [CrossRef]
- Yushina, I.D.; Kolesov, B.A. Interplay of intra- and intermolecular interactions in solid iodine at low temperatures: Experimental and theoretic spectroscopy study. J. Phys. Chem. A 2019, 123, 4575–4580. [Google Scholar] [CrossRef] [PubMed]
- Lyssenko, K.A.; Grintselev-Knyazev, G.V.; Antipin, M.Y. Nature of the PO bond in diphenylphosphonic acid: Experimental charge density and electron localization function analysis. Mendeleev Commun. 2002, 12, 128–130. [Google Scholar] [CrossRef]
- Rosokha, S.V.; Stern, C.L.; Swartz, A.; Stewart, R. Halogen bonding of electrophilic bromocarbons with pseudohalide anions. Phys. Chem. Chem. Phys. 2014, 16, 12968–12979. [Google Scholar] [CrossRef] [PubMed]
- Gou, G.-Z.; Kou, J.-F.; Zhou, Q.-D.; Chi, S.-M. N-(7-Dibromomethyl-5-methyl-1,8-naphthyridin-2-yl)acetamide-pyrrolidine-2,5-dione. Acta Crystallogr. Sect. E 2013, 69, o153–o154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vande Velde, C.M.L.; Zeller, M.; Azov, V.A. Comparison of computationally cheap methods for providing insight into the crystal packing of highly bromomethylated azobenzenes. Acta Crystallogr. Sect. C 2018, 74, 1692–1702. [Google Scholar] [CrossRef]
- Liu, X.; Kilner, C.A.; Thornton-Pett, M.; Halcrow, M.A. 1-(Dibromomethyl)-4-methoxy-2-methylbenzene. Acta Crystallogr. Sect. C 2001, 57, 317–318. [Google Scholar] [CrossRef]
- Gayathri, K.; Mohan, P.S.; Howard, J.A.K.; Sparkes, H.A. Crystal structure of 3-bromomethyl-2-chloro-6-(dibromomethyl)quinoline. Acta Crystallogr. Sect. E 2015, 71, o354–o355. [Google Scholar] [CrossRef] [PubMed]
- Rosin, R.; Seichter, W.; Mazik, M. Crystal structures of the dioxane hemisolvates of N-(7-bromomethyl-1,8-naphthyridin-2-yl)acetamide and bis[N-(7-dibromomethyl-1,8-naphthyridin-2-yl)acetamide]. Acta Crystallogr. Sect. E 2017, 73, 1409–1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fun, H.K.; Goh, J.H.; Chandrakantha, B.; Isloor, A.M. 1-Dibromo-methyl-4-meth-oxy-2-nitro-benzene. Acta Crystallogr. Sect. E Struct. Rep. Online 2009, 65, o2193–o2194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Solvate | d(BrXA···Br1), Å | ∠(C1A–BrXA···Br1),° | ∠(BrXA···Br1–Pt1),° |
---|---|---|---|
1·tbe | 3.3734 (12) | 173.8 (3) | 124.19 (4) |
3.4613 (16) | 174.3 (3) | 93.48 (3) | |
2·tbe | 3.5585 (7) | 167.20 (13) | 112.284 (17) |
3.6100 (7) | 174.56 (13) | 87.635 (14) |
Cluster | XB | Sign(λ2)ρ | G(r) | V(r) | H(r) | ΣNPA(tbe) | WBI |
---|---|---|---|---|---|---|---|
(1)·(tbe) (type 1) | Br1A···Br1 | −0.012 | 0.008 | −0.006 | 0.002 | −0.033 | 0.04 |
(1)·(tbe) (type 2) | Br2A···Br1 | −0.011 | 0.007 | −0.006 | 0.001 | −0.026 | 0.03 |
(2)·(tbe) (type 1) | Br1A···Br1 | −0.009 | 0.005 | −0.004 | 0.001 | −0.016 | 0.02 |
(2)·(tbe) (type 2) | Br2A···Br1 | −0.008 | 0.005 | −0.004 | 0.001 | −0.015 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheranyova, A.M.; Ivanov, D.M. Tetrabromoethane as σ-Hole Donor toward Bromide Ligands: Halogen Bonding between C2H2Br4 and Bromide Dialkylcyanamide Platinum(II) Complexes. Crystals 2021, 11, 835. https://doi.org/10.3390/cryst11070835
Cheranyova AM, Ivanov DM. Tetrabromoethane as σ-Hole Donor toward Bromide Ligands: Halogen Bonding between C2H2Br4 and Bromide Dialkylcyanamide Platinum(II) Complexes. Crystals. 2021; 11(7):835. https://doi.org/10.3390/cryst11070835
Chicago/Turabian StyleCheranyova, Anna M., and Daniil M. Ivanov. 2021. "Tetrabromoethane as σ-Hole Donor toward Bromide Ligands: Halogen Bonding between C2H2Br4 and Bromide Dialkylcyanamide Platinum(II) Complexes" Crystals 11, no. 7: 835. https://doi.org/10.3390/cryst11070835
APA StyleCheranyova, A. M., & Ivanov, D. M. (2021). Tetrabromoethane as σ-Hole Donor toward Bromide Ligands: Halogen Bonding between C2H2Br4 and Bromide Dialkylcyanamide Platinum(II) Complexes. Crystals, 11(7), 835. https://doi.org/10.3390/cryst11070835