The Electrochemical Reduction Mechanism of ZnFe2O4 in NaCl-CaCl2 Melts
Abstract
:1. Introduction
2. Experimental
2.1. Experimental Materials
2.2. Experimental Method
2.2.1. Electrochemical Experiment
2.2.2. ZnFe2O4 Electrolysis Experiment
3. Results and Discussion
3.1. The Calculation of Decomposition Voltage and Oxygen Partial Pressure of ZnFe2O4
3.2. Electrochemical Analysis of ZnFe2O4 in Melts
3.2.1. Cyclic Voltammetry
3.2.2. Square Wave Voltammetry and Open Circuit Potential
3.3. The Electrolysis of ZnFe2O4 in Melts
3.3.1. Product Analysis under Different Electrolytic Voltages
3.3.2. Zinc Behavior during the Electrolysis of ZnFe2O4
3.3.3. Product Analysis at Different Electrolytic Temperatures
4. Conclusions
- (1)
- The electrochemical reduction process of ZnFe2O4 on the Mo electrode is a three-step reduction: ZnFe2O4 → FeO + ZnO → Fe + ZnO → Fe + Zn. Fe3+ → Fe2+ → Fe are reversible reduction processes controlled by diffusion, and Zn2+ → Zn is an irreversible reduction process controlled by diffusion.
- (2)
- The surface of the deoxidized product has high crystallinity at 1.8 V electrolysis for 8 h. The lower content of Zn and O indicates that the deoxidation effect is better.
- (3)
- Electrolysis voltage is the driving force for electro-deoxidation, ZnFe2O4 is reduced to FeO and ZnO during the voltage of 0.6 V~1 V, then FeO is reduced to Fe at 1.2 V~1.6 V, when the electrolysis voltage is 1.8 V, ZnO is also reduced to Zn. The increase of temperature is beneficial to the diffusion of oxygen ions, the deoxidation rate is accelerated and the occurrence of side reactions can be reduced.
- (4)
- Electrolysis experiments also verified the stepwise reduction of ZnFe2O4. The reduction of ZnFe2O4 is achieved by electrolysis at 800 °C and 1.8 V for 8 h.
Author Contributions
Funding
Conflicts of Interest
References
- Chen, T.T.; Dutrizac, J.E. Mineralogical changes occurring during the fluid-bed roasting of zinc sulfide concentrates. JOM 2004, 56, 46–54. [Google Scholar] [CrossRef]
- Kim, W.; Saito, F. Mechanochemical synthesis of zinc ferrite from zinc oxide and α-Fe2O3. Powder Technol. 2001, 114, 12–16. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Li, X.H.; Pan, L.; Wei, Y.S.; Liang, X.Y. Effect of mechanical activation on the kinetics of extracting indium from indium-bearing zinc ferrite. Hydrometallurgy 2010, 102, 95–100. [Google Scholar] [CrossRef]
- Chen, Z.; Fray, D.J.; Farthing, T.W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature 2000, 407, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Kartal, L.; Daryal, M.B.; Sireli, G.K.; Timur, S. One-step electrochemical reduction of stibnite concentrate in molten borax. Int. J. Miner. Metall. Mater. 2019, 26, 1258–1265. [Google Scholar] [CrossRef]
- Schwandt, C.; Doughty, G.R.; Fray, D.J. The FFC-Cambridge process for titanium metal winning. Key Eng. Mater. 2010, 436, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Xiong, L.; Hua, Y.X.; Xu, C.Y.; Li, Y.; Zhang, Q.B.; Zhou, Z.; Zhang, Y.D.; Yu, J.J. Effect of CaO addition on preparation of ferrotitanium from ilmenite by electrochemical reduction in CaCl2-NaCl molten salt. J. Alloy. Compd. 2016, 676, 383–389. [Google Scholar] [CrossRef]
- Lzyumskaya, N.; Tahira, A.; Ibupoto, Z.H.; Lewinski, N.; Avrutin, V.; Özgür, Ü.; Topsakal, E.; Willander, M.; Morkoç, H. Review—Electrochemical Biosensors Based on ZnO Nanostructures. ECS J. Solid State Sci. Technol. 2017, 6, 84–100. [Google Scholar] [CrossRef]
- Peng, J.J.; Li, G.M.; Chen, H.L.; Wang, D.H.; Jin, X.B.; Chen, G.Z. Cyclic Voltammetry of ZrO2 Powder in the Metallic Cavity Electrode in Molten CaCl2. J. Electrochem. Soc. 2010, 157, F1. [Google Scholar] [CrossRef]
- Lebedev, V.A.; Sal’Nikov, V.I.; Tarabaev, M.V.; Sizikov, I.A.; Rymkevich, D.A. Kinetics and mechanism of the processes occurring at graphite anode in a CaO-CaCl2 melt. Russ. J. Appl. Chem. 2007, 80, 1498–1502. [Google Scholar] [CrossRef]
- Weng, W.; Wang, M.Y.; Gong, X.Z.; Wang, D.; Guo, Z.H. Electrochemical reduction behavior of soluble CaTiO3 in Na3AlF6-AlF3 melt for the preparation of metal titanium. J. Electrochem. Soc. 2017, 164, 551–557. [Google Scholar] [CrossRef]
- Xiao, S.J.; Liu, W.; Gao, L. Cathodic process of manganese (II) in NaCl-KCl melt. Ionics 2016, 22, 2387–2390. [Google Scholar] [CrossRef]
- Ghallali, H.E.; Groult, H.; Barhoun, K.; Krulic, D.; Lantelme, F. Lantelme, Electrochemical synthesis of Ni–Sn alloys in molten LiCl–KCl. Electrochim. Acta 2009, 54, 3152–3160. [Google Scholar] [CrossRef]
- Vandarkuzhali, S.; Gogoi, N.; Ghosh, S.; Reddy, B.P.; Nagarajan, K. Electrochemical behaviour of LaCl3 at tungsten and Aluminium cathodes in LiCl–KCl eutectic melt. Electrochim. Acta 2012, 59, 245–255. [Google Scholar] [CrossRef]
- Rezaei, M.; Ghorbani, M.; Dolati, A. Electrochemical investigation of electrodeposited Fe–Pd alloy thin films. Electrochim. Acta 2010, 56, 483–490. [Google Scholar] [CrossRef]
- Kuznetsov, S.A.; Hayashi, H.; Minato, K.; Eacard, M.G. Electrochemical transient techniques for determination of uranium and rare-earth metal separation coefficients in molten salts. Electrochim. Acta 2006, 51, 2463–2470. [Google Scholar] [CrossRef]
- Wei, L.; Sai, J.X.; Zhen, W. Electrochemical Behavior of Cr(II) Ion in NaCl-KCl Melt at W Electrode. Int. J. Electrochem. Sci. 2017, 17, 119–122. [Google Scholar]
- Li, M.; Liu, B.; Ji, N. Electrochemical extracting variable valence ytterbium from LiCl–KCl–YbCl3 melt on Cu electrode. Electrochim. Acta 2016, 193, 54–62. [Google Scholar] [CrossRef]
- Wiedenroth, A. The Fe2+/Fe3+-redox equilibrium in 5Na2O·15CaO·xAl2O3·(80−x)SiO2(x = 5 − 25) liquids. J. Non-Cryst. Solids. 2001, 290, 41–48. [Google Scholar] [CrossRef]
- Ruessel, C.; Freude, E. Voltammetric studies in a soda-lime-silica glass melt containing two different polyvalent ions. Glastech. Ber. 1990, 63, 149–153. [Google Scholar]
- Claussen, O.; Ruessel, C. Quantitative in-situ determination of iron in a soda-lime-silica glass melt with the aid of square-wave voltammetry. Glastech. Ber. Glass Sci. Technol. 1996, 69, 95–100. [Google Scholar]
- Lugovskoy, A.; Zinigrad, M.; Aurbach, D.; Unger, Z. Electrodeposition of iron(II) on platinum in chloride melts at 700–750 °C. Electrochim. Acta 2009, 54, 1904–1908. [Google Scholar] [CrossRef]
- Khalaghi, B.; Kvalheim, E.; Tokushige, M.; Teng, L.; Seetharaman, S.; Haarberg, G.M. Electrochemical behavior of dissolved iron chloride in KCl + LiCl + NaCl melt at 550 °C. ECS Trans. 2014, 64, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Pesic, B. Electrochemical behavior of LaCl3 and morphology of La deposit on molybdenum substrate in molten LiCl–KCl eutectic salt. Electrochim. Acta 2014, 119, 120–130. [Google Scholar] [CrossRef]
- Gibilaro, M.; Massot, L.; Chamelot, P. Investigations of Zr(IV) in LiF-CaF2, stability with oxide ions and electroreduction pathway on inert and reactive electrodes. Electrochim. Acta 2013, 95, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Gao, Y.; Lao, Y. Yttria-Stabilized Zirconia Aided Electrochemical Investigation on Ferric Ions in Mixed Molten Calcium and Sodium Chlorides. Metall. Mater. Trans. B 2018, 49, 2749–2808. [Google Scholar] [CrossRef]
- Li, H.; Jia, L.; Liang, J.L.; Yan, H.Y.; Cai, Z.Y.; Reddy, R.G. Study on the Direct Electrochemical Reduction of Fe2O3 in NaCl-CaCl2 Melt. Int. J. Electrochem. Sci. 2019, 14, 11267–11278. [Google Scholar] [CrossRef]
- Li, Y.; Li, N.; Miao, W.K.; Wang, C.X.; Kuang, D.Z.; Han, S.M. Nd–Mg–Ni alloy electrodes modified by reduced graphene oxide with improved electrochemical kinetics. Int. J. Miner. Metall. Mater. 2020, 185, 119–128. [Google Scholar] [CrossRef]
- Yan, X.Y.; Fray, D.J. Production of niobium powder by direct electrochemical reduction of solid Nb2O5 in a eutectic CaCl2-NaCl melt. Metall. Mater. Trans. B 2002, 33, 685–693. [Google Scholar] [CrossRef]
- Sri, M.; Sanil, N.; Shakila, L.; Panneerselvam, G.; Sudha, R.; Mohandas, K.S.; Nagarajan, K. A study of the reaction pathways during electrochemical reduction of dense Nb2O5 pellets in molten CaCl2 medium. Electrochim. Acta 2013, 100, 51–62. [Google Scholar]
- Xiao, W.; Jin, X.; Deng, Y.; Wang, D.; Hu, X.; Chen, G.Z. Electrochemically driven three-phase interlines into insulator compounds, electroreduction of solid SiO2 in molten CaCl2. Chemphyschem 2010, 7, 1750–1758. [Google Scholar] [CrossRef] [PubMed]
- Kjos, O.S.; Haarberg, R.M.; Martinez, A.M. Electrochemical Production of Titanium from Oxycarbide Anodes. Key Eng. Mater. 2010, 436, 93–101. [Google Scholar] [CrossRef]
- Mohandas, K.S.; Fray, D.J. Electrochemical Deoxidation of Solid Zirconium Dioxide in Molten Calcium Chloride. Metall. Mater. Trans. B 2009, 40, 685–699. [Google Scholar] [CrossRef]
- Zhong, M.; Yang, X.; Yasuda, K.; Homma, T.; Nohira, T. Effect of Si Addition on the Electrochemical Reduction Rate of SiO2 Granules in Molten CaCl2. Metall. Mater. Trans. B 2018, 49, 341–348. [Google Scholar] [CrossRef]
- Caban, K.; Donten, M.; Stojek, Z. Electroformation of Microlayers of Ionic Liquids in Undiluted Nitromethane and Its Homologues. Unusual Oscillations behind the Range of Limiting Steady-State Current. J. Phys. Chem. B 2004, 108, 1153–1159. [Google Scholar]
- Chen, S.M.; Liao, C.F.; Lin, J.Y.; Cai, B.Q.; Wang, X.; Jiao, Y.F. Electrical conductivity of molten LiF–DyF3–Dy2O3–Cu2O system for Dy–Cu intermediate alloy production. Int. J. Miner., Metall. Mater. 2019, 26, 701–709. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Liang, J.; Li, H.; Yan, H.; Zheng, S.; Cao, W.; Wang, L. The Electrochemical Reduction Mechanism of ZnFe2O4 in NaCl-CaCl2 Melts. Crystals 2021, 11, 925. https://doi.org/10.3390/cryst11080925
Liu C, Liang J, Li H, Yan H, Zheng S, Cao W, Wang L. The Electrochemical Reduction Mechanism of ZnFe2O4 in NaCl-CaCl2 Melts. Crystals. 2021; 11(8):925. https://doi.org/10.3390/cryst11080925
Chicago/Turabian StyleLiu, Chang, Jinglong Liang, Hui Li, Hongyan Yan, Sijia Zheng, Weigang Cao, and Le Wang. 2021. "The Electrochemical Reduction Mechanism of ZnFe2O4 in NaCl-CaCl2 Melts" Crystals 11, no. 8: 925. https://doi.org/10.3390/cryst11080925
APA StyleLiu, C., Liang, J., Li, H., Yan, H., Zheng, S., Cao, W., & Wang, L. (2021). The Electrochemical Reduction Mechanism of ZnFe2O4 in NaCl-CaCl2 Melts. Crystals, 11(8), 925. https://doi.org/10.3390/cryst11080925