Synthesis, Structure, and Properties of EuLnCuSe3 (Ln = Nd, Sm, Gd, Er)
Abstract
:1. Introduction
2. Methods and Materials
2.1. Synthesis
2.2. Analysis Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christuk, A.E.; Wu, P.; Ibers, J.A. New Quaternary Chalcogenides BaLnMQ3 (Ln-Rare Earth; M = Cu, Ag; Q = S, Se). J. Solid State Chem. 1994, 110, 330–336. [Google Scholar] [CrossRef]
- Strobel, S.; Schleid, T. Three structure types for strontium copper(I) lanthanide(III) selenides SrCuMSe3 (M = La, Gd, Lu). J. Alloys Compd. 2006, 418, 80–85. [Google Scholar] [CrossRef]
- Gulay, L.D.; Olekseyuk, I.D. Crystal structures of the RCuPbSe3 (R = Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) compounds. J. Alloys Compd. 2005, 387, 160–164. [Google Scholar] [CrossRef]
- Gulay, L.D.; Kaczorowski, D.; Pietraszko, A. Crystal structure and magnetic properties of YbCuPbSe3. J. Alloys Compd. 2006, 413, 26–28. [Google Scholar] [CrossRef]
- Gulay, L.D.; Shemet, V.Y.; Olekseyuk, I.D. Crystal structures of the compounds YCuPbSe3, Y3CuSnSe7 and Y3Cu0.685Se6. J. Alloys Compd. 2004, 385, 160–168. [Google Scholar] [CrossRef]
- Zheng, N.; Bu, X.; Vu, H.; Feng, P. Open-framework chalcogenides as visible-light photocatalysts for hydrogen generation from water. Angew. Chem. Int. Ed. 2005, 44, 5299–5303. [Google Scholar] [CrossRef]
- Wu, T.; Bu, X.; Feng, P. Three-dimensional open framework built from Cu-S icosahedral clusters and its photocatalytic property. J. Am. Chem. Soc. 2008, 130, 15238–15239. [Google Scholar] [CrossRef]
- Huang, F.Q.; Mitchell, K.; Ibers, J.A. New layered materials: Syntheses, structures, and optical and magnetic properties of CsGdZnSe3, CsZrCuSe3, CsUCuSe3, and BaGdCuSe3. Inorg. Chem. 2001, 40, 5123–5126. [Google Scholar] [CrossRef]
- Gulay, L.D.; Daszkiewicz, M.; Shemet, V.Y.; Pietraszko, A. Crystal structure of the R2PbS4 (R = Yb and Lu) compounds. J. Alloys Comp. 2008, 453, 143–146. [Google Scholar] [CrossRef]
- Liu, Y.; Song, X.-D.; Zhang, R.-C.; Zhou, F.-Y.; Zhang, J.-W.; Jiang, X.-M.; Ji, M.; An, Y.L. Solvothermal syntheses and characterizations of four quaternary copper sulfides BaCu3MS4 (M = In, Ga) and BaCu2MS4 (M = Sn, Ge). Inorg. Chem. 2019, 58, 15101–15109. [Google Scholar] [CrossRef]
- Sachanyuk, V.P.; Parasyuk, O.V.; Fedorchuk, A.O.; Atuchin, V.V.; Pervukhina, N.V.; Plotnikov, A.E. The system Ag2Se–Ho2Se3 in the 0–50 mol. % Ho2Se3 range and the crystal structure of two polymorphic forms of AgHoSe2. Mater. Res. Bull. 2007, 42, 1091–1098. [Google Scholar] [CrossRef]
- Assoud, A.; Shi, Y.; Guo, Q.; Kleinke, H. Crystal and electronic structure of the new quaternary sulfides TlLnAg2S3 (Ln = Nd, Sm and Gd). J. Solid State Chem. 2017, 256, 6–9. [Google Scholar] [CrossRef]
- Edhaim, F.; Rothenberger, A. Rare Earth chalcogels NaLnSnS4 (Ln = Y, Gd, Tb) for selective adsorption of volatile hydrocarbons and gases. Z. Anorg. Allg. Chem. 2017, 643, 953–961. [Google Scholar] [CrossRef]
- Batouche, M.; Seddik, T.; Ugur, S.; Ugur, G.; Messekine, S.; Vu, T.V.; Khyzhun, O.Y. DFT-investigation on anisotropy degree of electronic, optical, and mechanical properties of olivine ZnRE2S4 (RE = Er, Tm) compounds. Mater. Res. Express 2020, 7, 016305. [Google Scholar] [CrossRef]
- Lin, H.; Chen, H.; Zheng, Y.J.; Chen, Y.-K.; Yu, J.-S.; Wu, L.-M. Ba5Cu8In2S12: A quaternary semiconductor with a unique 3D copper-rich framework and ultralow thermal conductivity. Chem. Commun. 2017, 53, 2590–2593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakeshima, M.; Furuuchi, F.; Hinatsu, Y. Crystal structures and magnetic properties of novel rare-earth copper sulfides, EuRCuS3 (R = Y, Gd-Lu). J. Phys. Condens. Matter 2004, 16, 5503–5518. [Google Scholar] [CrossRef]
- Ruseikina, A.V.; Molokeev, M.S.; Chernyshev, V.A.; Aleksandrovsky, A.S.; Krylov, A.S.; Krylova, S.N.; Velikanov, D.A.; Grigoriev, M.V.; Maximov, N.G.; Shestakov, N.P.; et al. Synthesis, structure, and properties of EuScCuS3 and SrScCuS3. J. Solid State Chem. 2021, 296, 121926. [Google Scholar] [CrossRef]
- Wu, P.; Christuk, A.E.; Ibers, J.A. New Quaternary Chalcogenides BaLnMQ3 (Ln = Rare Earth or Sc; M = Cu, Ag; Q = S, Se) II Structure and.pdf. J. Solid State Chem. 1994, 110, 337–344. [Google Scholar] [CrossRef]
- Yang, Y.; Ibers, J.A. Synthesis and Characterization of a Series of Quaternary Chalcogenides BaLnMQ3 (Ln = Rare Earth, M = Coinage Metal, Q = Se or Te). J. Solid State Chem. 1999, 147, 366–371. [Google Scholar] [CrossRef]
- Strobel, S.; Schleid, T. Quaternary strontium copper(I) lanthanoid(III) selenides with cerium and praseodymium: SrCuCeSe3 and SrCuPrSe3, unequal brother and sister. Z. Naturforsch.-Sect. B J. Chem. Sci. 2004, 59, 985–991. [Google Scholar] [CrossRef]
- Mansuetto, M.F.; Keane, P.M.; Ibers, A.J. Synthesis, Structure, and Conductivity of the New Group IV Chalcogenides, KCuZrQ3 (Q = S, Se, Te). J. Solid State Chem. 1992, 101, 257–264. [Google Scholar] [CrossRef]
- Ruseikina, A.V.; Solovyov, L.A.; Chernyshev, V.; Aleksandrovsky, A.S.; Andreev, O.V.; Krylova, S.N.; Krylov, A.S.; Velikanov, D.A.; Molokeev, M.S.; Maximov, N.G.; et al. Synthesis, structure, and properties of EuErCuS3. J. Alloys Compd. 2019, 805, 779–788. [Google Scholar] [CrossRef] [Green Version]
- Ruseikina, A.V.; Chernyshev, V.A.; Velikanov, D.A.; Aleksandrovsky, A.S.; Shestakov, N.P.; Molokeev, M.S.; Grigoriev, M.V.; Andreev, O.V.; Garmonov, A.A.; Matigorov, A.V.; et al. Regularities of the property changes in the compounds EuLnCuS3 (Ln = La-Lu). J. Alloys Compd. 2021, 874, 159968. [Google Scholar] [CrossRef]
- Sokolov, V.V.; Kamarzin, A.A.; Trushnikova, L.N.; Savelyeva, M.V. Optical Materials Containing Rare Earth Ln2S3 Sulfides. J. Alloys Compd. 1995, 225, 567–570. [Google Scholar] [CrossRef]
- Reed, T.B.; Fahey, R.E.; Strauss, A.J. Sealed crucible technique for thermal analysis of volatile compounds up to 2500 °C: Melting points of EuO, EuS, EuSe and EuTe. J. Cryst. Growth 1972, 15, 174–178. [Google Scholar] [CrossRef]
- Fang, C.M.; Meetsma, A.; Wiegers, G.A. Crystal structure of erbium sesquiselenide, Er2Se3. J. Alloys Compd. 1995, 218, 224–227. [Google Scholar] [CrossRef]
- Fainberg, N.Y.; Andreev, O.V.; Kharitontsev, V.B.; Polkovnikov, A.A. Sm–Sm2Se3 phase diagram and properties of phases. Russ. J. Inorg. Chem. 2016, 61, 93–98. [Google Scholar] [CrossRef]
- Pribyl’skii, N.Y.; Vasilieva, I.G.; Gamidov, R.S. Phase equilibria of the Gd-Se system. Mater. Res. Bull. 1982, 17, 1147–1153. [Google Scholar] [CrossRef]
- Bagieva, M.R.; Aliev, I.I.; Babanly, M.B. Phase relations in the SnSe2-Er2Se3 system. Inorg. Mater. 2003, 39, 927–930. [Google Scholar] [CrossRef]
- Parasyuk, O.V.; Atuchin, V.V.; Romanyuk, Y.E.; Marushko, L.P.; Piskach, L.V.; Olekseyuk, I.D.; Volkov, S.V.; Pekhnyo, V.I. The CuGaSe2–CuInSe2–2CdS system and single crystal growth of the g-phase. J. Cryst. Growth, 2011; 318, 332–336. [Google Scholar] [CrossRef]
- Kokh, K.A.; Atuchin, V.V.; Adichtchev, S.V.; Gavrilova, T.A.; Bahadur, A.M.; Klimov, A.S.; Korolkov, I.V.; Kuratieva, N.; Mukherjee, S.; Pervukhina, N.V.; et al. Cu2ZnSnS4 crystal growth using an SnCl2 based flux. Cryst. Eng. Comm. 2021, 23, 1025–1032. [Google Scholar] [CrossRef]
- Murray, R.M.; Heyding, R.D. The Copper–Selenium System at Temperatures to 850 K and Pressures to 50 Kbar. Can. J. Chem. 1975, 53, 878–887. [Google Scholar] [CrossRef]
- Chakrabarti, D.J.; Laughlin, D.E. The Cu-Se (Copper-Selenium) system. Bull. Alloy Phase Diagrams 1981, 2, 305–315. [Google Scholar] [CrossRef]
- Eick, H.A. The crystal structure and lattice parameters of some rare earth mono-seleno oxides. Acta Crystallogr. 1960, 13, 161. [Google Scholar] [CrossRef]
- Christensen, A.N. Investigation by the use of profile refinement of neutron powder diffraction data of the geometry of the (Si2O7)6-ions in the high temperature phases of rare earth disilicates prepared from the melt in crucible-free synthesis. Z. Krist. 1994, 209, 7–13. [Google Scholar] [CrossRef]
- Antipov, E.; Putilin, S.; Shpanchenko, R. ICDD Grant-in-Aid; Moscow State University: Moscow, Russia, 1994. [Google Scholar]
- Souleau, C.; Guittard, M. Sur les systmes forms entre les slniures L2Se3 des lments des terres rares et le slniure EuSe d’europium. Bull. Soc. Chim. 1968, 1968, 3632. [Google Scholar]
- Zhu, W.J.; Huang, Y.Z.; Dong, C.; Zhao, Z.X. Synthesis and crystal structure of new rare-earth copper oxyselenides: R Cu Se O (R = La, Sm, Gd and Y). Mater. Res. Bull. 1994, 29, 143. [Google Scholar] [CrossRef]
- Kojima, K.; Nishizawa, S.; Hiraoka, K.; Hihara, T.; Kamigaichi, T. Valende change of Sm ion in Eu1-xSmxSe. Solid State Commun. 1983, 46, 417. [Google Scholar] [CrossRef]
- Berdonosov, P.S.; Kusainova, A.M.; Kholodkovskaya, L.N.; Dolgikh, V.A.; Akselrud, L.G.; Popovkin, B.A. Powder X ray and IR studies of the new oxyselenides M O Cu Se (M = Bi, Gd, Dy). J. Solid State Chem. 1995, 118, 74. [Google Scholar] [CrossRef]
- Toby, B.H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–213. [Google Scholar] [CrossRef] [Green Version]
- Larson, A.C.; von Dreele, R.B. General Structure Analysis System (GSAS); Los Alamos National Laboratory Report LAUR; APS, Aragone National Laboratory: Chicago, IL, USA, 2004; pp. 86–748. [Google Scholar]
- STOE & Cie. X-AREA; STOE & Cie GmbH: Darmstadt, Germany, 2013. [Google Scholar]
- Rigaku, O.D. CrysAlis PRO; Rigaku Oxford Diffraction Ltd.: Yarnton, UK, 2019. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Hübschle, C.B.; Sheldrick, G.M.; Dittrich, B. ShelXle: A Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284. [Google Scholar] [CrossRef] [Green Version]
- Joint CCDC/FIZ Karlsruhe Online Deposition Service. Available online: https://www.ccdc.cam.ac.uk/structures/ (accessed on 21 December 2021).
- Velikanov, D.A. Vibration Magnetic Meter. RF Patent for the Invention RU2341810 (C1). Publ. 20.12.2008, Bulletin No. 35. Available online: https://worldwide.espacenet.com/patent/search?q=RU2341810 (accessed on 21 December 2021).
- Puzey, I.M.; Sabinin, P.G. Electromagnet for physico-chemical studies. Prib. Tekh. Eksp. 1960, 1, 104–109. [Google Scholar]
- Velikanov, D.A. High-sensitivity measurements of the magnetic properties of materials at cryogenic temperatures. Inorg. Mater. Appl. Res. 2020, 11, 801–808. [Google Scholar] [CrossRef]
- Velikanov, D.A. Magnetometer with a Superconducting Quantum Interferometric Sensor. RF Patent for the Invention RU2481591 (C1). Publ. 10.05.2013, Bulletin No. 13. Available online: https://worldwide.espacenet.com/patent/search?q=RU2481591 (accessed on 21 December 2021).
- NETZSCH Proteus 6. Thermic Analyses—User’s and Software Manuals; Netzsch-Gerätebau: Selb, Germany, 2012. [Google Scholar]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Cryst. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Andreev, P.O.; Polkovnikov, A.A.; Denisenko, Y.G.; Andreev, O.V.; Burkhanova, T.M.; Bobylev, A.N.; Pimneva, L.A. Temperatures and enthalpies of melting of Ln2S3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) compounds. J. Therm. Anal. Calorim. 2018, 131, 1545–1551. [Google Scholar] [CrossRef]
- van den Eeckhout, K.; Smet, P.F.; Poelman, D. Persistent luminescence in Eu2+-doped compounds: A review. Materials 2010, 3, 2536–2566. [Google Scholar] [CrossRef] [Green Version]
- Ruseikina, A.V.; Andreev, O.V.; Galenko, E.O.; Koltsov, S.I. Trends in thermodynamic parameters of phase transitions of lanthanide sulfides SrLnCuS3 (Ln = La − Lu). J. Therm. Anal. Calorim. 2017, 128, 993–999. [Google Scholar] [CrossRef]
- Azarapin, N.O.; Aleksandrovsky, A.S.; Atuchin, V.V.; Gavrilova, T.A.; Krylov, A.S.; Molokeev, M.S.; Mukherjee, S.; Oreshonkov, A.S.; Andreev, O.V. Synthsis, structural and spectroscopic properties of orthorhombic compounds BaLnCuS3 (Ln = Pr, Sm). J. Alloys Compd. 2020, 832, 153134. [Google Scholar] [CrossRef]
- Azarapin, N.O.; Atuchin, V.V.; Maximov, N.G.; Aleksandrovsky, A.S.; Molokeev, M.S.; Oreshonkov, A.S.; Shestakov, N.P.; Krylov, A.S.; Burkhanova, T.M.; Mukherjee, S.; et al. Synthesis, structure, melting and optical properties of three complex orthorhombic sulfides BaDyCuS3, BaHoCuS3 and BaYbCuS3. Mater. Res. Bull. 2021, 140, 111314. [Google Scholar] [CrossRef]
- Oreshonkov, A.S.; Azarapin, N.O.; Shestakov, N.P.; Adichtchev, S.V. Experimental and DFT study of BaLaCuS3: Direct band gap semiconductor. J. Phys. Chem. Solids 2021, 148, 109670. [Google Scholar] [CrossRef]
Crystal Data | |
---|---|
Chemical Formula | EuErCuSe3 |
Mr | 619.64 |
Crystal system, space group | Orthorhombic, Cmcm |
Temperature (K) | 298 |
a, b, c (Å) | 4.0555 (3), 13.3570 (9), 10.4602 (7) |
V (Å3) | 566.62 (6) |
Z | 4 |
Radiation type | Mo Kα |
No. of reflections for cell measurement | 863 |
μ (mm−1) | 48.44 |
Crystal size (mm) and shape | 0.10 × 0.08 × 0.03, block |
Data Collection | |
Absorption correction | Multi-scan (CrysAlis PRO 1.171.40.53) |
Tmin, Tmax | 0.047, 0.068 |
No. of measured, independent and observed (I > 2σ(I)) reflections | 1336, 313, 270 |
Rint | 0.080 |
(sin θ/λ)max (Å−1) | 0.602 |
Range of h, k, l | h = −4→4, k = −12→16, l = −12→12 |
Refinement | |
R(F2 > 2σ(F2)), wR(F2), S | 0.031, 0.070, 1.05 |
No. of reflections | 313 |
No. of parameters | 24 |
∆⟩max, ∆⟩min (e Å−3) | 1.78, −2.08 |
Ln | Nd | Sm | Gd |
---|---|---|---|
Space group | Pnma | Pnma | Pnma |
Structure type | Eu2CuS3 (Gd3NiSi2) | Eu2CuS3 (Gd3NiSi2) | Eu2CuS3 (Gd3NiSi2) |
a, Å | 10.87487 (18) | 10.75704 (15) | 10.67493 (22) |
b, Å | 4.13258 (6) | 4.11120 (5) | 4.09671 (7) |
c, Å | 13.36404 (22) | 13.37778 (22) | 13.39231 (31) |
V, Å3 | 600.597 (16) | 591.624 (14) | 585.673 (21) |
ρxrd, gm/cm3 | 6.589 | 6.767 | 6.914 |
Z | 4 | 4 | 4 |
Element | Theoretical Content Mass. % | Sample B Mass. % | Sample C Mass. % |
---|---|---|---|
Eu | 24.5 | 25.3 | 25.3 ± 0.3 |
Er | 27.0 | 27.5 | 26.4 ± 0.3 |
Cu | 10.3 | 10.3 | 10.4 ± 0.3 |
Se | 38.2 | 36.9 | 37.9 ± 0.3 |
NETZSCH Jupiter STA 449 F3 | |||||
Tα↔β | ΔHα↔β | Tβ↔γ | ΔHβ↔γ | Tγ↔δ | ΔHγ↔δ |
1561 | 31.4 | 1579 | 4.4 | 1600 | 10.1 |
SETARAM SETSYS Evolution | |||||
1561 | 30.7 | 1579 | 4.6 | 1600 | 10.7 |
Compound | Melting Type | Tmelt, K | ΔHmelt, kJ/mol | Compound | Melting Type | Tmelt, K | ΔHmelt, kJ/mol |
---|---|---|---|---|---|---|---|
EuLaCuSe3 | Solid phase decay | 1202 | 2.6 | EuSmCuSe3 | Incongruent | 1449 | 18.8 |
EuCeCuSe3 | 1256 | 5.5 | EuGdCuSe3 | 1588 | 17.9 | ||
EuNdCuSe3 | 1296 | 8.2 | EuHoCuSe3 | 1645 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andreev, O.V.; Atuchin, V.V.; Aleksandrovsky, A.S.; Denisenko, Y.G.; Zakharov, B.A.; Tyutyunnik, A.P.; Habibullayev, N.N.; Velikanov, D.A.; Ulybin, D.A.; Shpindyuk, D.D. Synthesis, Structure, and Properties of EuLnCuSe3 (Ln = Nd, Sm, Gd, Er). Crystals 2022, 12, 17. https://doi.org/10.3390/cryst12010017
Andreev OV, Atuchin VV, Aleksandrovsky AS, Denisenko YG, Zakharov BA, Tyutyunnik AP, Habibullayev NN, Velikanov DA, Ulybin DA, Shpindyuk DD. Synthesis, Structure, and Properties of EuLnCuSe3 (Ln = Nd, Sm, Gd, Er). Crystals. 2022; 12(1):17. https://doi.org/10.3390/cryst12010017
Chicago/Turabian StyleAndreev, Oleg V., Victor V. Atuchin, Alexander S. Aleksandrovsky, Yuriy G. Denisenko, Boris A. Zakharov, Alexander P. Tyutyunnik, Navruzbek N. Habibullayev, Dmitriy A. Velikanov, Dmitriy A. Ulybin, and Daniil D. Shpindyuk. 2022. "Synthesis, Structure, and Properties of EuLnCuSe3 (Ln = Nd, Sm, Gd, Er)" Crystals 12, no. 1: 17. https://doi.org/10.3390/cryst12010017
APA StyleAndreev, O. V., Atuchin, V. V., Aleksandrovsky, A. S., Denisenko, Y. G., Zakharov, B. A., Tyutyunnik, A. P., Habibullayev, N. N., Velikanov, D. A., Ulybin, D. A., & Shpindyuk, D. D. (2022). Synthesis, Structure, and Properties of EuLnCuSe3 (Ln = Nd, Sm, Gd, Er). Crystals, 12(1), 17. https://doi.org/10.3390/cryst12010017