Crystal Plasticity (Volume II)
1. Introduction
Funding
Acknowledgments
Conflicts of Interest
References
- Polkowski, W. Crystal Plasticity. Crystals 2021, 11, 44. [Google Scholar] [CrossRef]
- Romanczuk-Ruszuk, E.; Nowik, K.; Sztorch, B. X-ray Line Profile Analysis of Austenitic Phase Transition and Morphology of Nickel-Free Fe-18Cr-18Mn Steel Powder Synthesized by Mechanical Alloying. Crystals 2022, 12, 1233. [Google Scholar] [CrossRef]
- Liu, Q.; Tang, Z.; Yang, X.; He, Z.; Xue, H.; Zhuge, H. Mechanical Properties of Low Carbon Alloy Steel with Consideration of Prior Fatigue and Plastic Damages. Crystals 2022, 12, 967. [Google Scholar] [CrossRef]
- Murali, A.P.; Ganesan, D.; Salunkhe, S.; Abouel Nasr, E.; Davim, J.P.; Hussein, H.M.A. Characterization of Microstructure and High Temperature Compressive Strength of Austenitic Stainless Steel (21-4N) through Powder Metallurgy Route. Crystals 2022, 12, 923. [Google Scholar] [CrossRef]
- Lyu, H.; Ruimi, A. Understanding the Plastic Deformation of Gradient Interstitial Free (IF) Steel under Uniaxial Loading Using a Dislocation-Based Multiscale Approach. Crystals 2022, 12, 889. [Google Scholar] [CrossRef]
- Katzarov, I.H.; Drenchev, L.B. Unveiling the Mechanisms of High-Temperature 1/2[111] Screw Dislocation Glide in Iron–Carbon Alloys. Crystals 2022, 12, 518. [Google Scholar] [CrossRef]
- Bonifaz, E.A.; Mena, A.S. The Cooling Rate and Residual Stresses in an AISI 310 Laser Weld: A Meso-Scale Approach. Crystals 2022, 12, 502. [Google Scholar] [CrossRef]
- Hussein, T.; Umar, M.; Qayyum, F.; Guk, S.; Prahl, U. Micromechanical Effect of Martensite Attributes on Forming Limits of Dual-Phase Steels Investigated by Crystal Plasticity-Based Numerical Simulations. Crystals 2022, 12, 155. [Google Scholar] [CrossRef]
- Zhang, B.; Meng, L.; Ma, G.; Zhang, N.; Li, G.; Liu, K.; Zhong, S. Twinning Behavior in Cold-Rolling Ultra-Thin Grain-Oriented Silicon Steel. Crystals 2021, 11, 187. [Google Scholar] [CrossRef]
- Engel, B.; Huth, M.; Hyde, C. Numerical Investigation into the Influence of Grain Orientation Distribution on the Local and Global Elastic-Plastic Behaviour of Polycrystalline Nickel-Based Superalloy INC-738 LC. Crystals 2022, 12, 100. [Google Scholar] [CrossRef]
- Koneva, N.A.; Nikonenko, E.L.; Nikonenko, A.V.; Popova, N.A. Microstructural Changes in Ni-Al-Cr-Based Heat-Resistant Alloy with Re Addition. Crystals 2021, 11, 89. [Google Scholar] [CrossRef]
- Wongsa-Ngam, J.; Noraphaiphipaksa, N.; Kanchanomai, C.; Langdon, T.G. Numerical Investigation of Plastic Strain Homogeneity during Equal-Channel Angular Pressing of a Cu-Zr Alloy. Crystals 2021, 11, 1505. [Google Scholar] [CrossRef]
- Huang, W.; Pan, K.; Zhang, J.; Gong, Y. Strain Rate and Temperature Effects on Tensile Properties of Polycrystalline Cu6Sn5 by Molecular Dynamic Simulation. Crystals 2021, 11, 1415. [Google Scholar] [CrossRef]
- Hsiao, S.-C.; Lin, S.-Y.; Chen, H.-J.; Hsieh, P.-Y.; Kuo, J.-C. Rolling Texture of Cu–30%Zn Alloy Using Taylor Model Based on Twinning and Coplanar Slip. Crystals 2021, 11, 1351. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, C.; Feng, W.; He, Y.; He, H.; Yang, J.; Chen, X. Effects of the Rare Earth Y on the Structural and Tensile Properties of Mg-based Alloy: A First-Principles Study. Crystals 2021, 11, 1003. [Google Scholar] [CrossRef]
- Aljarrah, M.; Alnahas, J.; Alhartomi, M. Thermodynamic Modeling and Mechanical Properties of Mg-Zn-{Y, Ce} Alloys: Review. Crystals 2021, 11, 1592. [Google Scholar] [CrossRef]
- Bai, F.; Zhu, Q.; Shen, J.; Lu, Z.; Zhang, L.; Ali, N.; Zhou, H.; Liu, X. Study on Phase Transformation Orientation Relationship of HCP-FCC during Rolling of High Purity Titanium. Crystals 2021, 11, 1164. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, D.; Zhou, Y.; Sha, A.; Cheng, H.; Yan, Y. A Constitutive Relation Based on the Johnson–Cook Model for Ti-22Al-23Nb-2(Mo, Zr) Alloy at Elevated Temperature. Crystals 2021, 11, 754. [Google Scholar] [CrossRef]
- Sedaghat, O.; Abdolvand, H. Strain-Gradient Crystal Plasticity Finite Element Modeling of Slip Band Formation in α-Zirconium. Crystals 2021, 11, 1382. [Google Scholar] [CrossRef]
- Wang, C.-T.; Li, Z.; He, Y.; Wang, J.-T.; Langdon, T.G. Microstructural Evolution and Tensile Testing of a Bi–Sn (57/43) Alloy Processed by Tube High-Pressure Shearing. Crystals 2021, 11, 1229. [Google Scholar] [CrossRef]
- Alsadi, J.; Ismail, R.; Trrad, I. An Integrative Simulation for Mixing Different Polycarbonate Grades with the Same Color: Experimental Analysis and Evaluations. Crystals 2022, 12, 423. [Google Scholar] [CrossRef]
- Mhadhbi, M.; Polkowski, W. Synthesis and Characterization of Mechanically Alloyed Nanostructured (Ti,Cr) C Carbide for Cutting Tools Application. Crystals 2022, 12, 1280. [Google Scholar] [CrossRef]
- Tseng, L.-W.; Chen, C.-H.; Tzeng, Y.-C.; Lee, P.-Y.; Lu, N.-H.; Chumlyakov, Y. Microstructure and Superelastic Properties of FeNiCoAlTi Single Crystals with the <100> Orientation under Tension. Crystals 2022, 12, 548. [Google Scholar] [CrossRef]
- Tseng, L.-W.; Chen, C.-H.; Chen, W.-C.; Cheng, Y.; Lu, N.-H. Shape Memory Properties and Microstructure of New Iron-Based FeNiCoAlTiNb Shape Memory Alloys. Crystals 2021, 11, 1253. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, P.; Lu, S. Investigation on the Effects of Grain Boundary on Deformation Behavior of Bicrystalline Pillar by Crystal Plasticity Finite Element Method. Crystals 2021, 11, 923. [Google Scholar] [CrossRef]
- Trusov, P.; Shveykin, A.; Kondratev, N. Some Issues on Crystal Plasticity Models Formulation: Motion Decomposition and Constitutive Law Variants. Crystals 2021, 11, 1392. [Google Scholar] [CrossRef]
- Khan, R.; Pervez, T.; Alfozan, A.; Qamar, S.Z.; Mohsin, S. Numerical Modeling and Simulations of Twinning-Induced Plasticity Using Crystal Plasticity Finite Element Method. Crystals 2022, 12, 930. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polkowski, W. Crystal Plasticity (Volume II). Crystals 2022, 12, 1344. https://doi.org/10.3390/cryst12101344
Polkowski W. Crystal Plasticity (Volume II). Crystals. 2022; 12(10):1344. https://doi.org/10.3390/cryst12101344
Chicago/Turabian StylePolkowski, Wojciech. 2022. "Crystal Plasticity (Volume II)" Crystals 12, no. 10: 1344. https://doi.org/10.3390/cryst12101344
APA StylePolkowski, W. (2022). Crystal Plasticity (Volume II). Crystals, 12(10), 1344. https://doi.org/10.3390/cryst12101344