Long-Distance High-Power Wireless Optical Energy Transmission Based on VECSELs
Abstract
:1. Introduction
2. System Overview
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sodhro, A.H.; Awad, A.I.; van de Beek, J.; Nikolakopoulos, G. Intelligent authentication of 5G healthcare devices: A survey. Internet Things 2022, 20, 100610. [Google Scholar] [CrossRef]
- Singh, P.; Elmi, Z.; Meriga, V.K.; Pasha, J.; Dulebenets, M.A. Internet of Things for sustainable railway transportation: Past, present, and future. Clean. Logist. Supply Chain. 2022, 4, 100065. [Google Scholar] [CrossRef]
- Singh, P.; Elmi, Z.; Lau, Y.; Borowska-Stefańska, M.; Wiśniewski, S.; Dulebenets, M.A. Blockchain and AI Technology Convergence: Applications in Transportation Systems. Veh. Commun. 2022, 38, 100521. [Google Scholar] [CrossRef]
- Goswami, H.; Choudhury, H. Remote Registration and Group Authentication of IoT Devices in 5G Cellular Network. Comput. Secur. 2022, 120, 102806. [Google Scholar] [CrossRef]
- Singh, P.; Dulebenets, M.A.; Pasha, J.; Gonzalez, E.D.S.; Lau, Y.Y.; Kampmann, R. Deployment of autonomous trains in rail transportation: Current trends and existing challenges. IEEE Access 2021, 9, 91427–91461. [Google Scholar] [CrossRef]
- Delgado-Santos, P.; Stragapede, G.; Tolosana, R.; Guest, R.; Deravi, F.; Vera-Rodriguez, R. A survey of privacy vulnerabilities of mobile device sensors. ACM Comput. Surv. (CSUR) 2022, 54, 1–30. [Google Scholar] [CrossRef]
- Lu, F.; Zhang, H.; Mi, C. A review on the recent development of capacitive wireless power transfer technology. Energies 2017, 10, 1752. [Google Scholar] [CrossRef] [Green Version]
- Rim, C.T.; Mi, C. Wireless Power Transfer for Electric Vehicles and Mobile Devices; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Sun, L.; Ma, D.; Tang, H. A review of recent trends in wireless power transfer technology and its applications in electric vehicle wireless charging. Renew. Sustain. Energy Rev. 2018, 91, 490–503. [Google Scholar] [CrossRef]
- Zhang, S.; Qian, Z.; Wu, J.; Kong, F.; Lu, S. Wireless charger placement and power allocation for maximizing charging quality. IEEE Trans. Mob. Comput. 2017, 17, 1483–1496. [Google Scholar] [CrossRef]
- Hui, S.Y. Planar wireless charging technology for portable electronic products and Qi. Proc. IEEE 2013, 101, 1290–1301. [Google Scholar] [CrossRef]
- Xie, L.; Shi, Y.; Hou, Y.T.; Lou, A. Wireless power transfer and applications to sensor networks. IEEE Wirel. Commun. 2013, 20, 140–145. [Google Scholar]
- Costanzo, A.; Dionigi, M.; Masotti, D.; Mongiardo, M.; Monti, G.; Tarricone, L.; Sorrentino, R. Electromagnetic energy harvesting and wireless power transmission: A unified approach. Proc. IEEE 2014, 102, 1692–1711. [Google Scholar] [CrossRef]
- Wei, X.; Wang, Z.; Dai, H. A critical review of wireless power transfer via strongly coupled magnetic resonances. Energies 2014, 7, 4316–4341. [Google Scholar] [CrossRef] [Green Version]
- Pantic, Z.; Lukic, S.M. Framework and topology for active tuning of parallel compensated receivers in power transfer systems. IEEE Trans. Power Electron. 2012, 27, 4503–4513. [Google Scholar] [CrossRef]
- Kurs, A.; Moffatt, R.; Soljačić, M. Simultaneous midrange power transfer to multiple devices. Appl. Phys. Lett. 2010, 96, 044102. [Google Scholar] [CrossRef]
- Karalis, A.; Joannopoulos, J.D.; Soljačić, M. Efficient wireless non-radiative midrange energy transfer. Ann. Phys. 2008, 323, 34–48. [Google Scholar] [CrossRef] [Green Version]
- Fu, W.; Zhang, B.; Qiu, D. Study on frequency-tracking wireless power transfer system by resonant coupling. In Proceedings of the 2009 IEEE 6th International Power Electronics and Motion Control Conference, Wuhan, China, 17–20 May 2009; IEEE Publications: Piscataway, NJ, USA, 2009; Volume 2009, pp. 2658–2663. [Google Scholar] [CrossRef]
- Garnica, J.; Chinga, R.A.; Lin, J. Wireless power transmission: From far field to near field. Proc. IEEE 2013, 101, 1321–1331. [Google Scholar] [CrossRef]
- Huang, K.; Lau, V.K.N. Enabling wireless power transfer in cellular networks: Architecture, modeling and deployment. IEEE Trans. Wirel. Commun. 2014, 13, 902–912. [Google Scholar] [CrossRef] [Green Version]
- Ladan, S.; Ghassemi, N.; Ghiotto, A.; Wu, K. Highly efficient compact rectenna for wireless energy harvesting application. IEEE Microw. Mag. 2013, 14, 117–122. [Google Scholar] [CrossRef]
- Summerer, L.; Purcell, O. Concepts for Wireless Energy Transmission via Laser; Europeans Space Agency (ESA)-Advanced Concepts Team: Noordwijk, The Netherlands, 2009. [Google Scholar]
- Man, Z.; Bao, J.; Xu, Z.; Lv, Z.; Liao, Q.; Yao, J.; Fu, H. Boosting the Efficiency of Organic Solid-State Lasers by Solvato-Tailored Assemblies. Adv. Funct. Mater. 2022, 2207282. [Google Scholar] [CrossRef]
- Kim, S.M.; Kim, S.M. Wireless optical energy transmission using optical beamforming. Opt. Eng. 2013, 52, 043205. [Google Scholar] [CrossRef]
- Putra, A.W.S.; Tanizawa, M.; Maruyama, T. Optical wireless power transmission using Si photovoltaic through air, water, and skin. IEEE Photonics Technol. Lett. 2018, 31, 157–160. [Google Scholar] [CrossRef]
- Ding, J.; Liu, W.; I, C.L.; Zhang, H.; Mei, H. Advanced progress of optical wireless technologies for power industry: An overview. Appl. Sci. 2020, 10, 6463. [Google Scholar] [CrossRef]
- Jin, K.; Zhou, W. Wireless laser power transmission: A review of recent progress. IEEE Trans. Power Electron. 2018, 34, 3842–3859. [Google Scholar] [CrossRef]
- Mukherjee, J.; Jarvis, S.; Perren, M.; Sweeney, S.J. Efficiency limits of laser power converters for optical power transfer applications. J. Phys. D Appl. Phys. 2013, 46, 264006. [Google Scholar] [CrossRef]
- Guina, M.; Rantamäki, A.; Härkönen, A. Optically pumped VECSELs: Review of technology and progress. J. Phys. D Appl. Phys. 2017, 50, 383001. [Google Scholar] [CrossRef]
- Kuznetsov, M. VECSEL Semiconductor Lasers: A Path to High-Power, Quality Beam and UV to IR Wavelength by Design; Wiley Online Library: Hoboken, NJ, USA, 2010. [Google Scholar]
- Tropper, A.C.; Foreman, H.D.; Garnache, A.; Wilcox, K.G.; Hoogland, S.H. Vertical-external-cavity semiconductor lasers. J. Phys. D Appl. Phys. 2004, 37, R75–R85. [Google Scholar] [CrossRef]
- Kantola, E.; Leinonen, T.; Ranta, S.; Tavast, M.; Guina, M. High-efficiency 20 W yellow VECSEL. Opt. Express 2014, 22, 6372–6380. [Google Scholar] [CrossRef]
- Tilma, B.W.; Mangold, M.; Zaugg, C.A.; Link, S.M.; Waldburger, D.; Klenner, A.; Mayer, A.S.; Gini, E.; Golling, M.; Keller, U. Recent advances in ultrafast semiconductor disk lasers. Light Sci. Appl. 2015, 4, e310. [Google Scholar] [CrossRef] [Green Version]
- Lorenser, D.; Maas, D.J.H.C.; Unold, H.J.; Bellancourt, A.-R.; Rudin, B.; Gini, E.; Ebling, D.; Keller, U. 50-GHz passively mode-locked surface-emitting semiconductor laser with 100-mW average output power. IEEE J. Quantum Electron. 2006, 42, 838–847. [Google Scholar] [CrossRef]
- Kemp, A.J.; Maclean, A.J.; Hastie, J.E.; Smith, S.A.; Hopkins, J.-M.; Calvez, S.; Valentine, G.J.; Dawson, M.D.; Burns, D. Thermal lensing, thermal management and transverse mode control in microchip VECSELs. Appl. Phys. B 2006, 83, 189–194. [Google Scholar] [CrossRef]
- Mansour, A.; Mesleh, R.; Abaza, M. New challenges in wireless and free space optical communications. Opt. Lasers Eng. 2017, 89, 95–108. [Google Scholar] [CrossRef]
- Mujeeb-U-Rahman, M.; Adalian, D.; Chang, C.F.; Scherer, A. Optical power transfer and communication methods for wireless implantable sensing platforms. J. Biomed. Opt. 2015, 20, 095012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minotto, A.; Haigh, P.A.; Łukasiewicz, Ł.G.; Lunedei, E.; Gryko, D.T.; Darwazeh, I.; Cacialli, F. Visible light communication with efficient farred/near-infrared polymer light-emitting diodes. Light Sci. Appl. 2020, 9, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavakkolnia, I.; Jagadamma, L.K.; Bian, R.; Manousiadis, P.P.; Videv, S.; Turnbull, G.A.; Samuel, I.D.W.; Haas, H. Organic photovoltaics for simultaneous energy harvesting and high-speed MIMO optical wireless communications. Light Sci. Appl. 2021, 10, 41. [Google Scholar] [CrossRef] [PubMed]
- Tropper, A.C.; Hoogland, S. Extended cavity surface-emitting semiconductor lasers. Prog. Quantum Electron. 2006, 30, 1–43. [Google Scholar] [CrossRef]
- Jasik, A.; Sokół, A.K.; Broda, A.; Sankowska, I.; Wójcik-Jedlińska, A.; Wasiak, M.; Trajnerowicz, A.; Kubacka-Traczyk, J.; Muszalski, J. Impact of strain on periodic gain structures in vertical external cavity surface-emitting lasers. Appl. Phys. B 2016, 122, 258. [Google Scholar] [CrossRef] [Green Version]
- Holm, M.A.; Burns, D.; Ferguson, A.I.; Dawson, M.D. Actively stabilized single-frequency vertical-external-cavity AlGaAs laser. IEEE Photonics Technol. Lett. 1999, 11, 1551–1553. [Google Scholar] [CrossRef]
- Siegman, A.E. New developments in laser resonators. In Optical Resonators; SPIE: Bellingham, WA, USA, 1990; Volume 1224, pp. 2–14. [Google Scholar]
- Alda, J. Laser and Gaussian beam propagation and transformation. In Encyclopedia of Optical Engineering; CRC Press: Boca Raton, FL, USA, 2003; Volume 999. [Google Scholar]
- Tromborg, B.; Osmundsen, J.; Olesen, H. Stability analysis for a semiconductor laser in an external cavity. IEEE J. Quantum Electron. 1984, 20, 1023–1032. [Google Scholar] [CrossRef]
- Haring, R.; Paschotta, M.; Aschwanden, A.; Gini, E.; Morier-Genoud, F.; Keller, U. High-power passively mode-locked semiconductor lasers. IEEE J. Quantum Electron. 2002, 38, 1268–1275. [Google Scholar] [CrossRef]
- Yang, H.D.; Lu, C.; Hsiao, R.; Chiou, C.; Lee, C.; Huang, C.; Yu, H.; Wang, C.; Lin, K.; Maleev, N.A.; et al. Characteristics of MOCVD- and MBE-grown InGa(N)As VCSELs. Semicond. Sci. Technol. 2005, 20, 834–839. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Zhang, J.; Gong, Y.; Zhou, Y.; Zhang, X.; Chen, C.; Wu, H.; Chen, Y.; Qin, L.; Ning, Y.; et al. Long-Distance High-Power Wireless Optical Energy Transmission Based on VECSELs. Crystals 2022, 12, 1475. https://doi.org/10.3390/cryst12101475
Zhang Z, Zhang J, Gong Y, Zhou Y, Zhang X, Chen C, Wu H, Chen Y, Qin L, Ning Y, et al. Long-Distance High-Power Wireless Optical Energy Transmission Based on VECSELs. Crystals. 2022; 12(10):1475. https://doi.org/10.3390/cryst12101475
Chicago/Turabian StyleZhang, Zhuo, Jianwei Zhang, Yuxiang Gong, Yinli Zhou, Xing Zhang, Chao Chen, Hao Wu, Yongyi Chen, Li Qin, Yongqiang Ning, and et al. 2022. "Long-Distance High-Power Wireless Optical Energy Transmission Based on VECSELs" Crystals 12, no. 10: 1475. https://doi.org/10.3390/cryst12101475
APA StyleZhang, Z., Zhang, J., Gong, Y., Zhou, Y., Zhang, X., Chen, C., Wu, H., Chen, Y., Qin, L., Ning, Y., & Wang, L. (2022). Long-Distance High-Power Wireless Optical Energy Transmission Based on VECSELs. Crystals, 12(10), 1475. https://doi.org/10.3390/cryst12101475