The Effect of Chemically Modified Multi-Walled Carbon Nanotubes on the Electro-Optical Properties of a Twisted Nematic Liquid Crystal Display Mode
Abstract
:1. Introduction
2. Experiments
2.1. The Materials
2.2. The Preparation of Samples
2.3. The Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Treacy, M.M.J.; Ebbesen, T.W.; Gibson, J.M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680. [Google Scholar] [CrossRef]
- Li, Y.J.; Wang, K.L.; Wei, J.Q.; Gu, Z.Y.; Wang, Z.C.; Luo, J.B.; Wu, D.H. Tensile properties of long aligned double-walled carbon nanotube strands. Carbon 2005, 43, 31–35. [Google Scholar] [CrossRef]
- Ruoff, R.S.; Lorents, D.C. Mechanical and thermal properties of carbon nanotubes. Carbon 1995, 33, 925–930. [Google Scholar] [CrossRef]
- Dai, H.J.; Wong, E.W.; Lieber, C.M. Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes. Science 1996, 272, 523–526. [Google Scholar] [CrossRef]
- Fischer, J.E.; Dai, H.; Thess, A.; Lee, R.; Hanjani, N.M.; Dehaas, D.L.; Smalley, R.E. Metallic resistivity in crystalline ropes of single-wall carbon nanotubes. Phys. Rev. B Condens. Matter. 1997, 55, R4921–R4924. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.H.; Fang, J.; Li, J.; Guo, Y.L.; Wang, Q.W. The effect of carbon nanotubes on the mechanical properties of wood plastic composites by selective laser sintering. Polymers 2017, 9, 728. [Google Scholar] [CrossRef] [Green Version]
- Sarvestani, H.Y.; Naghashpour, A.; Gorjipoor, A. A simple-input method to analyze thick composite tubes under pure bending moment reinforced by carbon nanotubes. Compos. Part B Eng. 2016, 87, 149–160. [Google Scholar]
- Li, Q.H.; Liu, J.T.; Xu, S.L. Progress in research on carbon nanotubes reinforced cementitious composites. Adv. Mater. Sci. Eng. 2015, 2015, 307435. [Google Scholar] [CrossRef] [Green Version]
- Dai, H.J.; Hafner, J.H.; Rinzler, A.G.; Colbert, D.T.; Smalley, R.E. Nanotubes as nanoprobes in scanning probe microscopy. Nature 1996, 384, 147–150. [Google Scholar]
- Monica, P.R.; Sreedevi, V.T. Suppression of ambipolar conduction in schottky barrier carbon nanotube field effect transistors: Modeling, optimization using particle swarm intelligence, and fabrication. CMES-Comput. Model. Eng. Sci. 2019, 119, 577–591. [Google Scholar]
- Lim, Y.D.; Hu, L.X.; Xia, X.; Ali, Z.S.; Wang, S.M.; Tay, B.K.; Aditya, S.; Miao, J.M. Field emission properties of SiO2-wrapped CNT field emitter. Nanotechnology 2018, 29, 015202. [Google Scholar] [CrossRef]
- Rabbani, M.T.; Schmidt, C.F.; Ros, A. Single-walled carbon nanotubes probed with insulator-based dielectrophoresis. Anal. Chem. 2017, 89, 13235–13244. [Google Scholar] [CrossRef]
- Choi, J.C.; Lee, D.J.; Park, M.K.; Park, J.S.; Lee, J.H.; Baek, J.H.; Choi, H.C.; Kim, H.R. Highly enhanced voltage holding property for low-frequency-driven fringe-field switching liquid crystal mode by charge-trapping effect of carbon-nanotube-doped surface. Opt. Express 2019, 27, 29177–29194. [Google Scholar] [CrossRef]
- Moghadas, F.; Poursamad, J.B.; Sahrai, M.; Emdadi, M. Flexoelectric coefficients enhancement via doping carbon nanotubes in nematic liquid crystal host. Eur. Phys. J. E 2019, 42, 1–8. [Google Scholar] [CrossRef]
- Jain, A.K.; Deshmukh, R.R. Electro-optical and dielectric study of multi-walled carbon nanotube doped polymer dispersed liquid crystal films. Liq. Cryst. 2019, 46, 1191–1202. [Google Scholar] [CrossRef]
- Wu, Y.; Cao, H.; Duan, M.Y.; Li, E.L.; Wang, H.H.; Yang, Z.; Wang, D.; He, W.L. Effects of a chemically modified multiwall carbon nanotubes on electro-optical properties of PDLC films. Liq. Cryst. 2018, 45, 1023–1031. [Google Scholar] [CrossRef]
- Dierking, I.; Scalia, G.; Morales, P.; LeClere, D. Aligning and reorienting carbon nanotubes with nematic liquid crystals. Adv. Mater. 2004, 16, 865–869. [Google Scholar] [CrossRef]
- Sousa, M.E.; Cloutier, S.G.; Jian, K.Q.; Weissman, B.S.; Hurt, R.H.; Crawford, G.P. Patterning lyotropic liquid crystals as precursors for carbon nanotube arrays. Appl. Phys. Lett. 2005, 87, 173115. [Google Scholar] [CrossRef]
- Selmani, S.; Schipper, D.J. Orientation control of molecularly functionalized surfaces applied to the simultaneous alignment and sorting of carbon nanotubes. Angew. Chem.-Int. Ed. 2018, 57, 2399–2403. [Google Scholar] [CrossRef]
- Duran, H.; Gazdecki, B.; Yamashita, A.; Kyu, T. Effect of carbon nanotubes on phase transitions of nematic liquid crystals. Liq. Cryst. 2005, 32, 815–821. [Google Scholar] [CrossRef]
- Lee, W.; Wang, C.Y.; Shih, Y.C. Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host. Appl. Phys. Lett. 2004, 85, 513–515. [Google Scholar] [CrossRef]
- Dhar, R.; Pandey, A.S.; Pandey, M.B.; Kumar, S.; Dabrowsi, R. Optimization of the display parameters of a room temperature twisted nematic display material by doping single-wall carbon nanotubes. Appl. Phys. Express 2008, 1, 121501. [Google Scholar] [CrossRef]
- Cao, H.; Ma, Z.; Li, K.X.; Zhu, S.Q.; Yang, H. Effects of carbon nanotubes on the electro-optical properties of the twisted nematic liquid crystal display mode. J. Univ. Sci. Technol. Beijing 2009, 31, 1442–1446. [Google Scholar]
- Lee, K.J.; Park, H.G.; Jeong, H.C.; Kim, D.H.; Seo, D.S.; Lee, J.W.; Moon, B.M. Enhanced electro-optical behaviour of a liquid crystal system via multi-walled carbon nanotube doping. Liq. Cryst. 2014, 41, 25–29. [Google Scholar] [CrossRef]
- Patro, C.K.; Verma, R.; Garg, A.; Dhar, R.; Dabrowski, R. Boost in the thermal stability, ionic conductivity and director relaxation frequency in the composite of liquid crystal and functionalised multi-walled carbon nanotubes. Liq. Cryst. 2021, 48, 345–360. [Google Scholar] [CrossRef]
- Liu, Y.L. Effective approaches for the preparation of organo-modified multi-walled carbon nanotubes and the corresponding MWCNT/polymer nanocomposites. Polym. J. 2016, 48, 351–358. [Google Scholar] [CrossRef]
MWNT-1 Concentration (wt%) | Contrast Ratio | Threshold Voltage (V) | Saturation Voltage (V) |
---|---|---|---|
0 | 91.43 | 0.765 | 1.582 |
0.01 | 64.10 | 0.516 | 0.774 |
0.02 | 58.25 | 0.523 | 0.810 |
0.03 | 49.67 | 0.579 | 0.955 |
0.05 | 41.78 | 0.431 | 1.088 |
MWNT-2 Concentration (wt%) | Contrast Ratio | Threshold Voltage (V) | Saturation Voltage (V) |
---|---|---|---|
0 | 91.43 | 0.765 | 1.582 |
0.01 | 69.60 | 0.530 | 0.993 |
0.02 | 64.13 | 0.677 | 0.970 |
0.03 | 56.06 | 0.605 | 1.297 |
0.05 | 47.59 | 0.645 | 0.876 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Gao, Y.; Cao, H. The Effect of Chemically Modified Multi-Walled Carbon Nanotubes on the Electro-Optical Properties of a Twisted Nematic Liquid Crystal Display Mode. Crystals 2022, 12, 1482. https://doi.org/10.3390/cryst12101482
Ma Z, Gao Y, Cao H. The Effect of Chemically Modified Multi-Walled Carbon Nanotubes on the Electro-Optical Properties of a Twisted Nematic Liquid Crystal Display Mode. Crystals. 2022; 12(10):1482. https://doi.org/10.3390/cryst12101482
Chicago/Turabian StyleMa, Zheng, Yanzi Gao, and Hui Cao. 2022. "The Effect of Chemically Modified Multi-Walled Carbon Nanotubes on the Electro-Optical Properties of a Twisted Nematic Liquid Crystal Display Mode" Crystals 12, no. 10: 1482. https://doi.org/10.3390/cryst12101482
APA StyleMa, Z., Gao, Y., & Cao, H. (2022). The Effect of Chemically Modified Multi-Walled Carbon Nanotubes on the Electro-Optical Properties of a Twisted Nematic Liquid Crystal Display Mode. Crystals, 12(10), 1482. https://doi.org/10.3390/cryst12101482