Mathematical Modeling of Nucleation and Growth Processes of Ellipsoidal Crystals in Binary Melts
Abstract
:1. Introduction
2. Growth Rates of Individual Ellipsoidal Crystals in a Binary Melt
3. Evolution of a Particulate Ensemble of Ellipsoidal Crystals
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Solomatov, V.S.; Stevenson, D.J. Kinetics of crystal growth in a terrestrial magma ocean. J. Geophys. Res. 1993, 98, 5407–5418. [Google Scholar] [CrossRef] [Green Version]
- Shibkov, A.A.; Zheltov, M.A.; Korolev, A.A.; Kazakov, A.A.; Leonov, A.A. Crossover from diffusion-limited to kinetics-limited growth of ice crystals. J. Cryst. Growth 2005, 285, 215–227. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Malygin, A.P.; Alexandrova, I.V. Solidification of leads: Approximate solutions of non-linear problem. Ann. Glaciol. 2006, 44, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Alexandrov, D.V.; Malygin, A.P. Coupled convective and morphological instability of the inner core boundary of the Earth. Phys. Earth Planet. Inter. 2011, 189, 134–141. [Google Scholar] [CrossRef]
- Yoshizaki, I.; Ishikawa, T.; Adachi, S.; Yokoyama, E.; Furukawa, Y. Precise measurements of dendrite growth of ice crystals in microgravity. Microgravity Sci. Technol. 2012, 24, 245–253. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Netreba, A.V.; Malygin, A.P. Time-dependent crystallization in magma chambers and lava lakes cooled from above: The role of convection and kinetics on nonlinear dynamics of binary systems. Int. J. Heat Mass Trans. 2012, 55, 1189–1196. [Google Scholar] [CrossRef]
- Schlichtkrull, J. Insulin crystals. V. The nucleation and growth of insulin crystals. Acta Chem. Scand. 1957, 11, 439–460. [Google Scholar] [CrossRef] [Green Version]
- Nývlt, J.; Söhnel, O.; Matuchova, M.; Broul, M. The Kinetics of Industrial Crystallization; Elsevier: Amsterdam, The Netherlands, 1985. [Google Scholar]
- Kelton, K.F.; Greer, A.L. Nucleation in Condensed Matter: Applications in Materials and Biology; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Herlach, D.M. Dendrite growth kinetics in undercooled melts of intermetallic compounds. Crystals 2015, 5, 355–375. [Google Scholar] [CrossRef] [Green Version]
- Herlach, D.M.; Simons, D.; Pichon, P.-Y. Crystal growth kinetics in undercooled melts of pure Ge, Si and Ge–Si alloys. Phil. Trans. R. Soc. A 2018, 376, 20170205. [Google Scholar] [CrossRef] [Green Version]
- Alexandrov, D.V.; Nizovtseva, I.G. On the theory of crystal growth in metastable systems with biomedical applications: Protein and insulin crystallization. Phil. Trans. R. Soc. A 2019, 377, 20180214. [Google Scholar] [CrossRef]
- Skripov, V.P. Metastable Liquids; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Buyevich, Y.A.; Natalukha, I.A. Unsteady processes of combined polymerization and crystallization in continuous apparatuses. Chem. Eng. Sci. 1994, 49, 3241–3247. [Google Scholar] [CrossRef]
- Buyevich, Y.A.; Goldobin, Y.M.; Yasnikov, G.P. Evolution of a particulate system governed by exchange with its environment. Int. J. Heat Mass Trans. 1994, 37, 3003–3014. [Google Scholar] [CrossRef]
- Slezov, V.V. Kinetics of First-Order Phase Transitions; Wiley-VCH: Weinheim, Germany, 2009. [Google Scholar]
- Dubrovskii, V.G. Nucleation Theory and Growth of Nanostructures; Springer: Berlin, Germany, 2014. [Google Scholar]
- Alexandrov, D.V. Nonlinear dynamics of polydisperse assemblages of particles evolving in metastable media. Eur. Phys. J. Spec. Top. 2020, 229, 383–404. [Google Scholar] [CrossRef]
- Makoveeva, E.V.; Alexandrov, D.V. The influence of non-stationarity and interphase curvature on the growth dynamics of spherical crystals in a metastable liquid. Phil. Trans. R. Soc. A 2021, 379, 20200307. [Google Scholar] [CrossRef] [PubMed]
- Alexandrova, I.V.; Alexandrov, D.V.; Makoveeva, E.V. Ostwald ripening in the presence of simultaneous occurrence of various mass transfer mechanisms: An extension of the Lifshitz-Slyozov theory. Phil. Trans. R. Soc. A 2021, 379, 20200308. [Google Scholar] [CrossRef]
- Ocaña, M.; Morales, M.P.; Serna, C.J. The growth mechanism of α-Fe2O3 ellipsoidal particles in solution. J. Colloid Int. Sci. 1995, 171, 85–91. [Google Scholar] [CrossRef]
- Sugimoto, T.; Muramatsu, A. Formation mechanism of monodispersed α-Fe2O3 particles in dilute FeCl3 solutions. J. Colloid Int. Sci. 1996, 184, 626–638. [Google Scholar] [CrossRef]
- Gasser, U.; Weeks, E.R.; Schofield, A.; Pusey, P.N.; Weitz, D.A. Real-space imaging of nucleation and growth in colloidal crystallization. Science 2001, 292, 258–262. [Google Scholar] [CrossRef] [Green Version]
- Mann, S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Prieler, R.; Hubert, J.; Li, D.; Verleye, B.; Haberkern, R.; Emmerich, H. An anisotropic phase-field crystal model for heterogeneous nucleation of ellipsoidal colloids. J. Phys. Condens. Matter 2009, 21, 464110. [Google Scholar] [CrossRef]
- Kertis, F.; Khurshid, S.; Okman, O.; Kysar, J.W.; Govada, L.; Chayen, N.; Erlebacher, J. Heterogeneous nucleation of protein crystals using nanoporous gold nucleants. J. Mater. Chem. 2012, 22, 21928. [Google Scholar] [CrossRef]
- Thieme, K.; Rüssel, C. Nucleation and growth kinetics and phase analysis in zirconia-containing lithium disilicate glass. J. Mater. Sci. 2015, 50, 1488–1499. [Google Scholar] [CrossRef]
- Li, Z.-W.; Zhu, Y.-L.; Lu, Z.-Y.; Sun, Z.-Y. General patchy ellipsoidal particle model for the aggregation behaviors of shape- and/or surface-anisotropic building blocks. Soft Matter 2018, 14, 7625. [Google Scholar] [CrossRef] [PubMed]
- Nikishina, M.A.; Alexandrov, D.V. Kinetics of the intermediate stage of phase transition with elliptical crystals. Eur. Phys. J. Spec. Top. 2020, 229, 2937–2949. [Google Scholar] [CrossRef]
- Nikishina, M.A.; Alexandrov, D.V. Nucleation and growth dynamics of ellipsoidal crystals in metastable liquids. Phil. Trans. R. Soc. A 2021, 379, 20200306. [Google Scholar]
- Alexandrov, D.V. Nucleation and crystal growth in binary systems. J. Phys. A Math. Theor. 2014, 47, 125102. [Google Scholar] [CrossRef]
- Alexandrov, D.V. Nucleation and growth of crystals at the intermediate stage of phase transformations in binary melts. Phil. Mag. Lett. 2014, 94, 786–793. [Google Scholar] [CrossRef]
- Ivanov, A.O.; Zubarev, A.Y. Non-linear evolution of a system of elongated drop-like aggregates in a metastable magnetic fluid. Phys. A 1998, 251, 348–367. [Google Scholar] [CrossRef]
- Alexandrov, D.V. Mathematical modelling of nucleation and growth of crystals with buoyancy effects. Philos. Mag. Lett. 2016, 96, 132–141. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Ivanov, A.A.; Nizovtseva, I.G.; Lippmann, S.; Alexandrova, I.V.; Makoveeva, E.V. Evolution of a polydisperse ensemble of spherical particles in a metastable medium with allowance for heat and mass exchange with the environment. Crystals 2022, 12, 949. [Google Scholar] [CrossRef]
- Volmer, U.; Raisch, J. H∞-Control of a continuous crystallizer. Control Eng. Pract. 2001, 9, 837–845. [Google Scholar] [CrossRef] [Green Version]
- Rachah, A.; Noll, D.; Espitalier, F.; Baillon, F. A mathematical model for continuous crystallization. Math. Methods Appl. Sci. 2015, 39, 1101–1120. [Google Scholar] [CrossRef]
- Korn, G.A.; Korn, T.M. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review; McGraw-Hill Book Company: New York, NY, USA, 1968. [Google Scholar]
- Ham, F.S. Shape-preserving solutions of the time-dependent diffusion equation. Quart. Appl. Math. 1959, 17, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Larouche, D. Mixed mode growth of an ellipsoidal precipitate: Analytical solution for shape preserving growth in the quasi-stationary regime. Acta Mater. 2017, 123, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Nikishina, M.A.; Alexandrov, D.V. Mathematical modeling of the growth of ellipsoidal crystals in metastable melts and solutions. Math. Meth. Appl. Sci. 2021, 44, 12252–12259. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Alexandrova, I.V.; Ivanov, A.A.; Malygin, A.P.; Starodumov, I.O.; Toropova, L.V. On the theory of the nonstationary spherical crystal growth in supercooled melts and supersaturated solutions. Russ. Metall. 2019, 8, 787–794. [Google Scholar]
- Galenko, P.K.; Reuther, K.; Kazak, O.V.; Alexandrov, D.V.; Rettenmayr, M. Effect of convective transport on dendritic crystal growth from pure and alloy melts. Appl. Phys. Lett. 2017, 111, 031602. [Google Scholar]
- Lifshitz, E.M.; Pitaevskii, L.P. Physical Kinetics; Pergamon Press: Oxford, UK, 1981. [Google Scholar]
- Randolph, A.; Larson, M. Theory of Particulate Processes; Academic Press: New York, NY, USA, 1988. [Google Scholar]
- Melikhov, I.V.; Belousova, T.Y.; Rudnev, N.A.; Bludov, N.T. Fluctuation in the rate of growth of monocrystals. Kristallografiya 1974, 19, 1263–1268. [Google Scholar]
- Zumstein, R.C.; Rousseau, R.W. Growth rate dispersion by initial growth rate distributions and growth rate fluctuations. AIChE J. 1987, 33, 121–129. [Google Scholar] [CrossRef]
- Buyevich, Y.A.; Mansurov, V.V. Kinetics of the intermediate stage of phase transition in batch crystallization. J. Cryst. Growth 1990, 104, 861–867. [Google Scholar] [CrossRef]
- Barlow, D.A.; Baird, J.K.; Su, C.-H. Theory of the von Weimarn rules governing the average size of crystals precipitated from a supersaturated solution. J. Cryst. Growth 2004, 264, 417–423. [Google Scholar] [CrossRef]
- Herlach, D.; Galenko, P.; Holland-Moritz, D. Metastable Solids from Undercooled Melts; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Alexandrova, I.V.; Alexandrov, D.V. Dynamics of particulate assemblages in metastable liquids: A test of theory with nucleation and growth kinetics. Phil. Trans. R. Soc. A 2020, 378, 20190245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandrov, D.V. On the theory of transient nucleation at the intermediate stage of phase transitions. Phys. Lett. A 2014, 378, 1501–1504. [Google Scholar] [CrossRef]
- Makoveeva, E.V.; Alexandrov, D.V. Effects of external heat/mass sources and withdrawal rates of crystals from a metastable liquid on the evolution of particulate assemblages. Eur. Phys. J. Special Topics 2019, 228, 25–34. [Google Scholar] [CrossRef]
- Makoveeva, E.V.; Alexandrov, D.V. Mathematical simulation of the crystal nucleation and growth at the intermediate stage of a phase transition. Russ. Metall. (Metally) 2018, 8, 707–715. [Google Scholar] [CrossRef]
- Makoveeva, E.; Alexandrov, D. Ivanov, A. Mathematical modeling of crystallization process from a supercooled binary melt. Math. Meth. Appl. Sci. 2021, 44, 12244–12251. [Google Scholar] [CrossRef]
- Makoveeva, E.V.; Alexandrov, D.V. How the shift in the phase transition temperature influences the evolution of crystals during the intermediate stage of phase transformations. Eur. Phys. J. Spec. Top. 2020, 229, 2923–2935. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Ivanov, A.A. The Stefan problem of solidification of ternary systems in the presence of moving phase transition regions. J. Exper. Theor. Phys. 2009, 108, 821–829. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Aseev, D.L.; Nizovtseva, I.G.; Huang, H.-N.; Lee, D. Nonlinear dynamics of directional solidification with a mushy layer. Analytic solutions of the problem. Int. J. Heat Mass Trans. 2007, 50, 3616–3623. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Malygin, A.P. Flow-induced morphological instability and solidification with the slurry and mushy layers in the presence of convection. Int. J. Heat Mass Trans. 2012, 55, 3196–3204. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikishina, M.A.; Alexandrov, D.V. Mathematical Modeling of Nucleation and Growth Processes of Ellipsoidal Crystals in Binary Melts. Crystals 2022, 12, 1495. https://doi.org/10.3390/cryst12101495
Nikishina MA, Alexandrov DV. Mathematical Modeling of Nucleation and Growth Processes of Ellipsoidal Crystals in Binary Melts. Crystals. 2022; 12(10):1495. https://doi.org/10.3390/cryst12101495
Chicago/Turabian StyleNikishina, Margarita A., and Dmitri V. Alexandrov. 2022. "Mathematical Modeling of Nucleation and Growth Processes of Ellipsoidal Crystals in Binary Melts" Crystals 12, no. 10: 1495. https://doi.org/10.3390/cryst12101495
APA StyleNikishina, M. A., & Alexandrov, D. V. (2022). Mathematical Modeling of Nucleation and Growth Processes of Ellipsoidal Crystals in Binary Melts. Crystals, 12(10), 1495. https://doi.org/10.3390/cryst12101495