Comparative Study of TiMn and TiAlV Alloys via the Nanoindentation Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. X-ray Fluorescence
2.4. Phase Composition Examination
2.5. Microstructural Analysis
2.6. Relative Density and Porosity
2.7. Nanoindentation
2.7.1. Elastic Modulus
2.7.2. Yield Pressure and Wear Properties
3. Results
3.1. Elemental Analysis
3.2. Microstructural Characterization
3.3. Phase Composition Examination
3.4. Relative Density
3.5. Nanoindentation
3.5.1. Load versus displacement curves of the Ti6Al4V, Ti-10Mn, and Ti-5Mn alloy
- Loading stage;
- Holding stage;
- Unloading stage.
3.5.2. Nanohardness
3.5.3. Reduced Elastic Modulus of the Ti6Al4V, Ti-5Mn Alloy, and Ti-10Mn
3.5.4. Yield Pressure and Wear Properties
4. Discussions
4.1. Elemental Analysis
4.2. Microstructure
4.3. Phase Composition Analysis
4.4. Relative Density
4.5. Nanoindentation
4.6. Nanohardness
4.7. Er of the Ti6Al4V, Ti-5Mn Alloy, and Ti-10Mn
4.8. Yield Pressure and Wear Properties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodriguez, G.M.; Bowen, J.; Zelzer, M.; Stamboulis, A. Selective modification of Ti6Al4V surfaces for biomedical applications. RSC Adv. 2020, 10, 17642–17652. [Google Scholar] [CrossRef] [PubMed]
- Fuller, R.; Landrigan, P.J.; Balakrishnan, K.; Bathan, G.; Bose-O'Reilly, S.; Brauer, M.; Caravanos, J.; Chiles, T.; Cohen, A.; Corra, L.; et al. Pollution and health: A progress update. Lancet Planet. Health 2022, 6, e535–e547. [Google Scholar] [CrossRef]
- Asrar, S.; Tufail, M.; Chandio, A.D. Facile Coating of HAP on Ti6Al4V for Osseointegration. Eng. Technol. Appl. Sci. Res. 2021, 11, 7240–7246. [Google Scholar] [CrossRef]
- Khadija, G.; Saleem, A.; Akhtar, Z.; Naqvi, Z.; Gull, M.; Masood, M.; Mukhtar, S.; Batool, M.; Saleem, N.; Rasheed, T.; et al. Short term exposure to titanium, aluminum and vanadium (Ti 6Al 4V) alloy powder drastically affects behavior and antioxidant metabolites in vital organs of male albino mice. Toxicol. Rep. 2018, 5, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, M.; Kato-Negishi, M. Link between Aluminum and the Pathogenesis of Alzheimer's Disease: The Integration of the Aluminum and Amyloid Cascade Hypotheses. Int. J. Alzheimer's Dis. 2011, 2011, 276393. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Weidmann, A.; Nebe, J.B.; Beck, U.; Burkel, E. Preparation, microstructures, mechanical properties, and cytocompatibility of TiMn alloys for biomedical applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 94, 406–413. [Google Scholar] [CrossRef]
- Si, J.; Lv, Y.; Lu, S.; Xiang, Y. Microscopic phase-segregated quaternary ammonia polysulfone membrane for vanadium redox flow batteries. J. Power Sources 2019, 428, 88–92. [Google Scholar] [CrossRef]
- Alqattan, M.; Peters, L.; Alshammari, Y.; Yang, F.; Bolzoni, L. Antibacterial Ti-Mn-Cu alloys for biomedical applications. Regen. Biomater. 2021, 8, rbaa050. [Google Scholar] [CrossRef]
- Della Pepa, G. Microelements for bone boost: The last but not the least. Clin. Cases Miner. Bone Metab. 2016, 13, 181–185. [Google Scholar] [CrossRef]
- Santos, P.F.; Niinomi, M.; Liu, H.; Cho, K.; Nakai, M.; Itoh, Y.; Narushima, T.; Ikeda, M. Fabrication of low-cost beta-type Ti–Mn alloys for biomedical applications by metal injection molding process and their mechanical properties. J. Mech. Behav. Biomed. Mater. 2016, 59, 497–507. [Google Scholar] [CrossRef]
- Alshammari, Y.; Yang, F.; Bolzoni, L. Mechanical properties and microstructure of Ti-Mn alloys produced via powder metallurgy for biomedical applications. J. Mech. Behav. Biomed. Mater. 2019, 91, 391–397. [Google Scholar] [CrossRef]
- Attar, H.; Ehtemam-Haghighi, S.; Kent, D.; Okulov, I.; Wendrock, H.; Bönisch, M.; Volegov, A.; Calin, M.; Eckert, J.; Dargusch, M. Nanoindentation and wear properties of Ti and Ti-TiB composite materials produced by selective laser melting. Mater. Sci. Eng. A 2017, 688, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Abro, S.H.; Chandio, A.; Siddiqui, M.A.; Channa, I.A. Aluminum and aluminum nitrides effect on nucleation sites in micro-alloyed steel. Proc. Pakistan Acad. Sci. Part B 2019, 56, 17–26. [Google Scholar]
- Makhdoom, M.A.; Sgobba, V.; Channa, I.A.; Ghewins, N. Producing oxide free silicon nanocrystals—A novel & benign approach. Optik 2021, 246, 167789. [Google Scholar] [CrossRef]
- Giraldez, I.; Garrido, M.; Río, T.; Ceballos, L.; Rodriguez, J. Comparison of the mechanical properties of dentin and enamel determined by different nanoindentation techniques: Conventional method and continuous stiffness measurement. Boletín Soc. Española Cerámica Vidr. 2010, 49, 177–182. [Google Scholar]
- Tuninetti, V.; Jaramillo, A.F.; Riu, G.; Rojas-Ulloa, C.; Znaidi, A.; Medina, C.; Mateo, A.M.; Roa, J.J. Experimental Correlation of Mechanical Properties of the Ti-6Al-4V Alloy at Different Length Scales. Metals 2021, 11, 104. [Google Scholar] [CrossRef]
- Radhakrishnan, P.M.; Dheepthi, M. A Review on Nano-Indentation of Thin Polymeric Films. Int. J. Eng. Res. Technol. 2019, 8, IJERTV8IS030084. [Google Scholar]
- Ashfaq, J.; Channa, I.A.; Shaikh, A.A.; Chandio, A.D.; Shah, A.A.; Bughio, B.; Birmahani, A.; Alshehri, S.; Ghoneim, M.M. Gelatin-and Papaya-Based Biodegradable and Edible Packaging Films to Counter Plastic Waste Generation. Materials 2022, 15, 1046. [Google Scholar] [CrossRef]
- Bull, S.J. Nanoindentation of coatings. J. Phys. D Appl. Phys. 2005, 38, R393–R413. [Google Scholar] [CrossRef]
- Ragupathy, S.; Priyadharsan, A.; AlSalhi, M.S.; Devanesan, S.; Guganathan, L.; Santhamoorthy, M.; Kim, S. Effect of doping and loading Parameters on photocatalytic degradation of brilliant green using Sn doped ZnO loaded CSAC. Environ. Res. 2022, 210, 112833. [Google Scholar] [CrossRef]
- Ahmad, S.; Channa, I.A. Mathematical Relationship between Ferritic, Pearlitic and Average Grain Size of Steel. J. Mod. Sci. Technol. 2013, 1, 1–18. [Google Scholar]
- Chen, L.-Y.; Cui, Y.-W.; Zhang, L.-C. Recent Development in Beta Titanium Alloys for Biomedical Applications. Metals 2020, 10, 1139. [Google Scholar] [CrossRef]
- Ehtemam-Haghighi, S.; Cao, G.; Zhang, L.-C. Nanoindentation study of mechanical properties of Ti based alloys with Fe and Ta additions. J. Alloys Compd. 2016, 692, 892–897. [Google Scholar] [CrossRef]
- Santos, P.F.; Niinomi, M.; Cho, K.; Nakai, M.; Liu, H.; Ohtsu, N.; Hirano, M.; Ikeda, M.; Narushima, T. Microstructures, mechanical properties and cytotoxicity of low cost beta Ti–Mn alloys for biomedical applications. Acta Biomater. 2015, 26, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Xie, L.; Wang, Z.; Wang, L.; Lu, W.; Zhang, L.-C. Nanoindentation characterization on local plastic response of Ti-6Al-4V under high-load spherical indentation. J. Mater. Res. Technol. 2019, 8, 3434–3442. [Google Scholar] [CrossRef]
- Li, R.; Riester, L.; Watkins, T.; Blau, P.J.; Shih, A.J. Metallurgical analysis and nanoindentation characterization of Ti–6Al–4V workpiece and chips in high-throughput drilling. Mater. Sci. Eng. A 2008, 472, 115–124. [Google Scholar] [CrossRef]
- Azmat, A.; Tufail, M.; Chandio, A.D. Synthesis and Characterization of Ti-Sn Alloy for Orthopedic Application. Materials 2021, 14, 7660. [Google Scholar] [CrossRef]
- Si, Y. Effect of Manganese Addition on the Microstructure and Mechanical Properties of Ti-Nb Biomedical Alloys. IOP Conf. Ser. Earth Environ. Sci. 2019, 252, 022137. [Google Scholar] [CrossRef]
- Maja, M.E.; Falodun, O.E.; Obadele, B.A.; Oke, S.R.; Olubambi, P.A. Nanoindentation studies on TiN nanoceramic reinforced Ti–6Al–4V matrix composite. Ceram. Int. 2018, 44, 4419–4425. [Google Scholar] [CrossRef]
- Almanza, E.; Pérez, M.; Rodríguez, N.; Murr, L. Corrosion resistance of Ti-6Al-4V and ASTM F75 alloys processed by electron beam melting. J. Mater. Res. Technol. 2017, 6, 251–257. [Google Scholar] [CrossRef]
- Dalmau, A.; Pina, V.G.; Devesa, F.A.; Amigó, V.; Muñoz, A.I. Electrochemical behavior of near-beta titanium biomedical alloys in phosphate buffer saline solution. Mater. Sci. Eng. C 2015, 48, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Waheed, H.; Hussain, A.; Farrukh, S. Fabrication, characterization and permeation study of ultrafiltration dialysis membranes. Desalination Water Treat. 2016, 57, 24799–24806. [Google Scholar] [CrossRef]
- Santos, P.F.; Niinomi, M.; Liu, H.; Nakai, M.; Cho, K.; Narushima, T.; Ueda, K.; Ohtsu, N.; Hirano, M.; Itoh, Y. Development and Performance of Low-Cost Beta-Type Ti-Based Alloys for Biomedical Applications Using Mn Additions BT. In Interface Oral Health Science 2016; Springer: Singapore, 2017; pp. 229–245. [Google Scholar]
- Ran, J.; Jiang, F.; Sun, X.; Chen, Z.; Tian, C.; Zhao, H. Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated by Electron Beam Melting. Crystals 2020, 10, 972. [Google Scholar] [CrossRef]
- Ikeda, M.; Ueda, M.; Kinoshita, T.; Ogawa, M.; Niinomi, M. Influence of Fe Content of Ti-Mn-Fe Alloys on Phase Constitution and Heat Treatment Behavior. Mater. Sci. Forum 2012, 706-709, 1893–1898. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Yaghoobi, M. Review of Nanoindentation Size Effect: Experiments and Atomistic Simulation. Crystals 2017, 7, 321. [Google Scholar] [CrossRef] [Green Version]
- Majumdar, P.; Singh, S.; Chakraborty, M. Elastic modulus of biomedical titanium alloys by nano-indentation and ultrasonic techniques—A comparative study. Mater. Sci. Eng. A 2008, 489, 419–425. [Google Scholar] [CrossRef]
- Pascu, C.I.; Gheorghe, S.; Rotaru, A.; Nicolicescu, C.; Cioateră, N.; Roșca, A.S.; Sârbu, D.; Rotaru, P. Ti-based composite materials with enhanced thermal and mechanical properties. Ceram. Int. 2020, 46, 29358–29372. [Google Scholar] [CrossRef]
Elements | Purity (%) |
---|---|
Ti | 98.5 |
V | 99.0 |
Mn | 99.0 |
Al | 99.0 |
S.No. | Alloys | Nanohardness (MPa) | Vicker’s Hardness (MPa) | |
---|---|---|---|---|
α-Phase | β-Phase | |||
1 | Ti-5Mn | 2056.1 | 3098.2 | 450 |
2 | Ti-10Mn | 1992.2 | 2264.1 | 380 |
3 | Ti-6Al-4V | 1908.1 | 2461.2 | 335 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asrar, S.; Azmat, A.; Channa, I.A.; Ashfaq, J.; Sufyan, F.; Feroze, S.; Chandio, A.D.; Ali Shar, M.; Alhazaa, A. Comparative Study of TiMn and TiAlV Alloys via the Nanoindentation Technique. Crystals 2022, 12, 1537. https://doi.org/10.3390/cryst12111537
Asrar S, Azmat A, Channa IA, Ashfaq J, Sufyan F, Feroze S, Chandio AD, Ali Shar M, Alhazaa A. Comparative Study of TiMn and TiAlV Alloys via the Nanoindentation Technique. Crystals. 2022; 12(11):1537. https://doi.org/10.3390/cryst12111537
Chicago/Turabian StyleAsrar, Shafaq, Ambreen Azmat, Iftikhar Ahmed Channa, Jaweria Ashfaq, Faraz Sufyan, Sarmad Feroze, Ali Dad Chandio, Muhammad Ali Shar, and Abdulaziz Alhazaa. 2022. "Comparative Study of TiMn and TiAlV Alloys via the Nanoindentation Technique" Crystals 12, no. 11: 1537. https://doi.org/10.3390/cryst12111537
APA StyleAsrar, S., Azmat, A., Channa, I. A., Ashfaq, J., Sufyan, F., Feroze, S., Chandio, A. D., Ali Shar, M., & Alhazaa, A. (2022). Comparative Study of TiMn and TiAlV Alloys via the Nanoindentation Technique. Crystals, 12(11), 1537. https://doi.org/10.3390/cryst12111537