Chromonic Ionic Liquid Crystals Forming Nematic and Hexagonal Columnar Phases
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tam-Chang, S.-W.; Huang, L. Chromonic liquid crystals: Properties and applications as functional materials. Chem. Commun. 2008, 17, 1957–1967. [Google Scholar] [CrossRef]
- Collings, P.J.; Dickinson, A.J.; Smith, E.C. Molecular aggregation and chromonic liquid crystals. Liq. Cryst. 2010, 37, 701–710. [Google Scholar] [CrossRef]
- Lydon, J. Chromonic liquid crystalline phases. Liq. Cryst. 2011, 38, 1663–1681. [Google Scholar] [CrossRef]
- Zhou, S. Recent progresses in lyotropic chromonic liquid crystal research: Elasticity, viscosity, defect structures, and living liquid crystals. Liq. Cryst. Today 2018, 27, 91–108. [Google Scholar] [CrossRef]
- Ruslim, C.; Matsunaga, D.; Hashimoto, M.; Tamaki, T.; Ichimura, K. Structural Characteristics of the Chromonic Mesophases of C.I. Direct Blue 67. Langmuir 2003, 19, 3686–3691. [Google Scholar] [CrossRef]
- Hara, M.; Nagano, S.; Mizoshita, N.; Seki, T. Chromonic/Silica Nanohybrids: Synthesis and Macroscopic Alignment. Langmuir 2007, 23, 12350–12355. [Google Scholar] [CrossRef]
- Iverson, I.K.; Tam-Chang, S.-W. Cascade of Molecular Order by Sequential Self-Organization, Induced Orientation, and Order Transfer Processes. J. Am. Chem. Soc. 1999, 121, 5801–5802. [Google Scholar] [CrossRef]
- Tam-Chang, S.-W.; Iverson, I.K.; Helbley, J. Study of the Chromonic Liquid-Crystalline Phases of Bis-(N,N-diethylaminoethyl)perylene-3,4,9,10-tetracarboxylic Diimide Dihydrochloride by Polarized Optical Microscopy and 2H NMR Spectroscopy. Langmuir 2004, 20, 342–347. [Google Scholar] [CrossRef]
- Ohno, H. Functional Design of Ionic liquids. Bull. Chem. Soc. Jpn. 2006, 79, 1665–1680. [Google Scholar] [CrossRef]
- Ohno, H.; Yoshizawa-Fujita, M.; Kohno, Y. Functional Design of Ionic Liquids Unprecedented Liquids that Contribute to Energy Technology, Bioscience, and Materials Sciences. Bull. Chem. Soc. Jpn. 2019, 92, 852–868. [Google Scholar] [CrossRef]
- MacFarlane, D.R.; Forsyth, M.; Howlett, P.C.; Kar, M.; Passerini, S.; Pringle, J.M.; Ohno, H.; Watanabe, M.; Yan, F.; Zheng, W.; et al. Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat. Rev. Mater. 2016, 1, 15005. [Google Scholar] [CrossRef]
- Kato, T.; Yoshio, M.; Ichikawa, T.; Soberats, B.; Ohno, H.; Funahashi, M. Transport of ions and electrons in nanostructured liquid crystals. Nat. Rev. Mater. 2017, 2, 17001. [Google Scholar] [CrossRef]
- Goossens, K.; Lava, K.; Bielawski, C.W.; Binnemans, K. Ionic Liquid Crystals: Versatile Materials. Chem. Rev. 2016, 116, 4643–4807. [Google Scholar] [CrossRef]
- Axenov, K.V.; Laschat, S. Thermotropic Ionic Liquid Crystals. Materials 2011, 4, 206–259. [Google Scholar] [CrossRef]
- Ichikawa, T.; Kato, T.; Ohno, H. Dimension control of ionic liquids. Chem. Commun. 2019, 55, 8205–8214. [Google Scholar] [CrossRef]
- Pringle, J.M.; Howlett, P.C.; MacFarlane, D.R.; Forsyth, M. Organic ionic plastic crystals: Recent advances. J. Mater. Chem. 2010, 20, 2056–2062. [Google Scholar] [CrossRef]
- MacFarlane, D.R.; Huang, J.; Forsyth, M. Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries. Nature 1999, 402, 792–794. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Yamada, H.; Takeoka, Y.; Rikukawa, M.; Yoshizawa-Fujita, M. Synthesis of pyrrolidinium-based plastic crystals exhibiting high ionic conductivity at ambient temperature. New J. Chem. 2019, 43, 4008–4012. [Google Scholar] [CrossRef]
- Shimoyama, Y.; Uchida, S. Structure-function Relationships of Porous Ionic Crystals (PICs) Based on Polyoxometalate Anions and Oxo-centered Trinuclear Metal Carboxylates as Counter Cations. Chem. Lett. 2021, 50, 21–30. [Google Scholar] [CrossRef]
- Swatloski, R.P.; Spear, S.K.; Holbrey, J.D.; Rogers, R.D. Dissolution of Cellose with Ionic Liquids. J. Am. Chem. Soc. 2002, 124, 4974–4975. [Google Scholar] [CrossRef]
- Fukaya, Y.; Hayashi, K.; Wada, M.; Ohno, H. Cellulose dissolution with polar ionic liquids under mild conditions: Required factors for anions. Green Chem. 2008, 10, 44–46. [Google Scholar] [CrossRef]
- Fujita, K.; Ohno, H. Stable G-quadruplex structure in a hydrated ion pair: Cholinium cation and dihydrogen phosphate anion. Chem. Commun. 2012, 48, 5751–5753. [Google Scholar] [CrossRef]
- Fujita, K.; MacFarlane, D.R.; Forsyth, M.; Yoshizawa-Fujita, M.; Murata, K.; Nakamura, N.; Ohno, H. Solubility and stability of cytochrome c in hydrated ionic liquids: Effect of oxo acid residues and kosmotropicity. Biomacromolecules 2007, 8, 2080–2086. [Google Scholar] [CrossRef]
- Fujita, K.; Sanada, M.; Ohno, H. Sugar chain-binding specificity and native folding state of lectins preserved in hydrated ionic liquids. Chem. Commun. 2015, 51, 10883–10886. [Google Scholar] [CrossRef]
- Fujita, K.; Nakano, R.; Nakaba, R.; Nakamura, N.; Ohno, H. Hydrated ionic liquids enable both solubilisation and refolding of aggregated concanavalin A. Chem. Commun. 2019, 55, 3578–3581. [Google Scholar] [CrossRef]
- Kasianova, I.; Kharatyian, E.; Geivandov, A.; Palto, S. Lyotropic liquid crystal guest-host material and anisotropic thin films for optical applications. Liq. Cryst. 2010, 37, 1439–1451. [Google Scholar] [CrossRef]
- Wang, D.; Yan, Q.; Zhong, F.; Li, Y.; Fu, M.; Meng, L.; Huang, Y.; Li, L. Counterion-Induced Nanosheet-to-Nanofilament Transition of Lyotropic Bent-Core Liquid Crystals. Langmuir 2018, 34, 13006–13013. [Google Scholar] [CrossRef]
- Yoshio, M.; Mukai, T.; Ohno, H.; Kato, T. One-Dimensional Ion Transport in Self-Organized Columnar Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 994–995. [Google Scholar] [CrossRef]
- Ohno, H.; Fujita, K.; Kohno, Y. Is seven a minimum number of water molecules per ion pair for assured biological activity in ionic liquid/water mixtures? Phys. Chem. Chem. Phys. 2015, 17, 14454–14460. [Google Scholar] [CrossRef]
- Haberler, M.; Schröder, C.; Steinhauser, O. Hydrated Ionic Liquids with and without Solute: The Influence of Water Content and Protein Solutes. J. Chem. Theory Comput. 2012, 8, 3911–3928. [Google Scholar] [CrossRef]
- Fujita, K.; MacFarlane, D.R.; Forsyth, M. Protein solubilising and stabilising ionic liquids. Chem. Commun. 2005, 38, 4804–4806. [Google Scholar] [CrossRef]
- Shiyanovskii, S.V.; Lavrentovich, O.D.; Schneider, T.; Ishikawa, T.; Smalyukh, I.I.; Woolverton, C.J.; Niehaus, G.D.; Doane, K.J. Lyotropic Chromonic Liquid Crystals for Biological Sensing Applications. Mol. Cryst. Liq. Cryst. 2005, 434, 259–270. [Google Scholar] [CrossRef]
- Bosire, R.; Ndaya, D.; Kasi, R.M. Recent progress in functional materials from lyotropic chromonic liquid crystals. Polym. Int. 2021, 70, 938–943. [Google Scholar] [CrossRef]
Water Content X | Exothermic Peak Area (mJ/mg) | Component Ratios in Weight | Component Ratios in Mole | ||||
---|---|---|---|---|---|---|---|
pQpdS-Ch | Free Water | Bound Water | pQpdS-Ch | Free Water | Bound Water | ||
90 | 256 | 10 | 77 | 13 | 1 | 313 | 55 |
80 | 228 | 20 | 38 | 12 | 1 | 139 | 24 |
70 | 184 | 30 | 55 | 15 | 1 | 75 | 20 |
60 | 135 | 40 | 40 | 20 | 1 | 41 | 20 |
50 | 106 | 50 | 32 | 18 | 1 | 26 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ichikawa, T.; Kuwana, M.; Suda, K. Chromonic Ionic Liquid Crystals Forming Nematic and Hexagonal Columnar Phases. Crystals 2022, 12, 1548. https://doi.org/10.3390/cryst12111548
Ichikawa T, Kuwana M, Suda K. Chromonic Ionic Liquid Crystals Forming Nematic and Hexagonal Columnar Phases. Crystals. 2022; 12(11):1548. https://doi.org/10.3390/cryst12111548
Chicago/Turabian StyleIchikawa, Takahiro, Mei Kuwana, and Kaori Suda. 2022. "Chromonic Ionic Liquid Crystals Forming Nematic and Hexagonal Columnar Phases" Crystals 12, no. 11: 1548. https://doi.org/10.3390/cryst12111548
APA StyleIchikawa, T., Kuwana, M., & Suda, K. (2022). Chromonic Ionic Liquid Crystals Forming Nematic and Hexagonal Columnar Phases. Crystals, 12(11), 1548. https://doi.org/10.3390/cryst12111548