Structure and Molecular Dynamics in Metal-Containing Polyamide 6 Microparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Synthesis of Metal-Loaded PA6 MP
2.3. Characterization by SEM
2.4. Characterization by ssNMR
2.5. Characterization by DSC
2.6. Characterization by XRD
3. Results and Discussion
3.1. Sample Synthesis, Designation and Morphology
3.2. Characterization by ssNMR
3.2.1. General Evaluation of the ssNMR Spectra
3.2.2. Influence of the Metal Particles on the Crystalline Structure of the PA6 Matrix
3.2.3. Molecular Dynamics Studies by ssNMR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tomasini, A.; León-Santiesteban, H.H. 12—Nylon uses in biotechnology. In Biocomposites; Misra, M., Pandey, J.K., Mohanty, A.K., Eds.; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Cambridge, UK, 2015; pp. 319–346. ISBN 978-1-78242-373-7. [Google Scholar]
- Schmidt, J.; Sachs, M.; Fanselow, S.; Zhao, M.; Romeis, S.; Drummer, D.; Wirth, K.-E.; Peukert, W. Optimized polybutylene terephthalate powders for selective laser beam melting. Chem. Eng. Sci. 2016, 156, 1–10. [Google Scholar] [CrossRef]
- Schmidt, J.; Sachs, M.; Blümel, C.; Winzer, B.; Toni, F.; Wirth, K.-E.; Peukert, W. A novel process route for the production of spherical LBM polymer powders with small size and good flowability. Powder Technol. 2014, 261, 78–86. [Google Scholar] [CrossRef]
- Wang, G.; Wang, P.; Zhen, Z.; Zhang, W.; Ji, J. Preparation of PA12 microspheres with tunable morphology and size for use in SLS processing. Mater. Des. 2015, 87, 656–662. [Google Scholar] [CrossRef]
- Drummer, D.; Medina-Hernández, M.; Drexler, M.; Wudy, K. Polymer Powder Production for Laser Melting Through Immiscible Blends. Procedia Eng. 2015, 102, 1918–1925. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.; Das, S. Processing and properties of glass bead particulate-filled functionally graded Nylon-11 composites produced by selective laser sintering. Mater. Sci. Eng. A 2006, 437, 226–234. [Google Scholar] [CrossRef]
- Denchev, Z.; Dencheva, N. Polyamide Microcapsules and Method to Produce the Same. Patent No. PT PT10767914A, 6 March 2014. [Google Scholar]
- Dencheva, N.; Denchev, Z.; Lanceros-Méndez, S.; Ezquerra Sanz, T. One-step in situ synthesis of polyamide microcapsules with inorganic payload and their transformation into responsive thermoplastic composite materials. Macromol. Mater. Eng. 2016, 301, 119–124. [Google Scholar] [CrossRef]
- Sankaran, S.; Deshmukh, K.; Ahamed, M.B.; Pasha, S.K.K. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2018, 114, 49–71. [Google Scholar] [CrossRef]
- Hu, M.; Gao, J.; Dong, Y.; Li, K.; Shan, G.; Yang, S.; Li, R.K.-Y. Flexible Transparent PES/Silver Nanowires/PET Sandwich-Structured Film for High-Efficiency Electromagnetic Interference Shielding. Langmuir 2012, 28, 7101–7106. [Google Scholar] [CrossRef]
- Cano-Raya, C.; Dencheva, N.V.; Braz, J.F.; Malfois, M.; Denchev, Z.Z. Optical biosensor for catechol determination based on laccase-immobilized anionic polyamide 6 microparticles. J. Appl. Polym. Sci. 2020, 137, 49131. [Google Scholar] [CrossRef]
- Dencheva, N.; Oliveira, S.; Braz, J.; Getya, D.; Malfois, M.; Denchev, Z.; Gitsov, I. Magnetically Responsive PA6 Microparticles with Immobilized Laccase Show High Catalytic Efficiency in the Enzymatic Treatment of Catechol. Catalysts 2021, 11, 239. [Google Scholar] [CrossRef]
- Dencheva, N.V.; Vale, D.M.; Denchev, Z.Z. Dually reinforced all-polyamide laminate composites via microencapsulation strategy. Polym. Eng. Sci. 2016, 57, 806–820. [Google Scholar] [CrossRef]
- Kurosu, H.; Ando, S.; Yoshimizu, H.; Ando, I. NMR Studies of Higher-order Structures of Solid Polymers. In Annual Reports on NMR Spectroscopy; Ando, I., Webb, G.A., Eds.; Academic Press: Cambridge, MA, USA, 1994; Volume 28, pp. 189–275. [Google Scholar]
- Weeding, T.L.; Veeman, W.S.; Gaur, H.A.; Huysmans, W.G.B. Structural investigation of polyamide-6 and polyamide-6 composites using carbon-13 cross polarization/magic angle spinning NMR. Macromolecules 1988, 21, 2028–2032. [Google Scholar] [CrossRef]
- Kubo, K.; Yamanobe, T.; Komoto, T.; Ando, I.; Shiibashi, T. Nylon 6 structure in solid state as studied by high-resolution 13C-NMR spectroscopy. J. Polym. Sci. Part B Polym. Phys. 1989, 27, 929–937. [Google Scholar] [CrossRef]
- Kubo, K.; Ando, I.; Shiibashi, T.; Yamanobe, T.; Komoto, T. Conformations and 13C NMR chemical shifts of some polyamides in the solid state as studied by high-resolution 13C NMR spectroscopy. J. Polym. Sci. Part B Polym. Phys. 1991, 29, 57–66. [Google Scholar] [CrossRef]
- Hatfield, G.R.; Glans, J.H.; Hammond, W.B. Characterization of structure and morphology in nylon 6 by solid-state carbon-13 and nitrogen-15 NMR. Macromolecules 1990, 23, 1654–1658. [Google Scholar] [CrossRef]
- Mathias, L.J.; Powell, D.G.; Autran, J.-P.; Porter, R.S. Solid state 15N nuclear magnetic resonance of 15N-labeled nylon 6 and nylon 11: Observation of multiple crystalline forms and amorphous regions. Mater. Sci. Eng. A 1990, 126, 253–263. [Google Scholar] [CrossRef]
- Powell, D.G.; Mathias, L.J. Characterization of nylon 6 by nitrogen-15 solid-state nuclear magnetic resonance. J. Am. Chem. Soc. 1990, 112, 669–675. [Google Scholar] [CrossRef]
- Powell, D.G.; Mathias, L.J. Nitrogen-15 T1 measurements of semicrystalline nylon 6. Macromolecules 1989, 22, 3812–3814. [Google Scholar] [CrossRef]
- Dencheva, N.; Nunes, T.; Oliveira, M.J.; Denchev, Z. Microfibrillar composites based on polyamide/polyethylene blends. 1. Structure investigations in oriented and isotropic polyamide 6. Polymer 2005, 46, 887–901. [Google Scholar] [CrossRef]
- Dencheva, N.; Nunes, T.G.; Oliveira, M.J.; Denchev, Z. Crystalline structure of polyamide 12 as revealed by solid-state 13C NMR and synchrotron WAXS and SAXS. J. Polym. Sci. Part B Polym. Phys. 2007, 43, 3720–3733. [Google Scholar] [CrossRef]
- Davis, R.D.; Jarrett, W.L.; Mathias, L.J. Solution and Solid-State NMR Spectroscopy of Nylon 6-Montmorillonite Clay Nanocomposites. In Polymer Nanocomposites; American Chemical Society: Washington, DC, USA, 2001; Volume 804, pp. 117–126. [Google Scholar]
- Umek, P.; Huskić, M.; Škapin, A.S.; Florjančič, U.; Zupančič, B.; Emri, I.; Arčon, D. Structural and mechanical properties of polystyrene nanocomposites with 1D titanate nanostructures prepared by an extrusion process. Polym. Compos. 2009, 30, 1318–1325. [Google Scholar] [CrossRef]
- Jouni, M.; Buzlukov, A.; Bardet, M.; Boisson, F.; Eddarir, A.; Massardier, V.; Boiteux, G. Skin effect of conductive polymer composites observed by high-resolution solid-state NMR. Compos. Sci. Technol. 2014, 104, 104–110. [Google Scholar] [CrossRef]
- Brêda, C.; Dencheva, N.; Lanceros-Mendez, S.; Denchev, Z. Preparation and properties of metal-containing polyamide hybrid composites via reactive microencapsulation. J. Mater. Sci. 2016, 51, 10534–10554. [Google Scholar] [CrossRef] [Green Version]
- Axelson, D.E.; Russell, K.E. Characterization of polymers by means of 13C NMR spectroscopy: (a) Morphology by Solid-State NMR (b) End-Group Studies. Prog. Polym. Sci. 1985, 11, 221–282. [Google Scholar] [CrossRef]
- Bovey, F.A.; Jelinski, L.W. The observation of chain motion in macromolecules by carbon-13 and deuterium nuclear magnetic resonance spectroscopy. J. Phys. Chem. 1985, 89, 571–583. [Google Scholar] [CrossRef]
- Torchia, D.A. The measurement of proton-enhanced carbon-13 T1 values by a method which suppresses artifacts. J. Magn. Reson. 1978, 30, 613–616. [Google Scholar] [CrossRef]
- Campoy, I.; Gómez, M.A.; Marco, C. Structure and thermal properties of blends of nylon 6 and a liquid crystal copolyester. Polymer 1998, 39, 6279–6288. [Google Scholar] [CrossRef]
- Ashiotis, G.; Deschildre, A.; Nawaz, Z.; Wright, J.P.; Karkoulis, D.; Picca, F.E.; Kieffer, J. The fast azimuthal integration Python library: pyFAI. J. Appl. Crystallogr. 2015, 48, 510–519. [Google Scholar] [CrossRef]
- Vasiliu-Oprea, C.; Dan, F. On the relation between synthesis parameters and morphology of anionic polycaproamide obtained in organic media. I. Influence of the Na[O(CH2)2OCH3]2AlH2/isophorone diisocyanate catalytic system. J. Appl. Polym. Sci. 1996, 62, 1517–1527. [Google Scholar] [CrossRef]
- Zoya, B. Popović, B.D.P. The skin effect. In Introductory Electromagnetics; Prentice-Hall Inc.: Hoboken, NJ, USA, 1999; pp. 382–392. [Google Scholar]
- Oliveira, F.M. Development and Optimization of a Novel Microcapsule Polyamide Plattform and Its Applicatuon for the Fabrication of High-Performance Magnetic, Electro-Shielding and High k Thermoplastic Composites. Ph.D. Thesis, University of Minho, Guimarães, Portugal, 2020. [Google Scholar]
- Schreiber, R.; Veeman, W.S.; Gabriëlse, W.; Arnauts, J. NMR Investigations of Orientational and Structural Changes in Polyamide-6 Yarns by Drawing. Macromolecules 1999, 32, 4647–4657. [Google Scholar] [CrossRef]
- Bovey, F.A.; Mirau, P.A. The dynamics of macromolecules. In NMR of Polymers; Bovey, F.A., Mirau, P.A., Eds.; Academic Press: San Diego, CA, USA, 1996; pp. 353–453. ISBN 978-0-12-119765-0. [Google Scholar]
- Jelinski, L.W.; Melchior, M.T. High-Resolution NMR of Solids. Appl. Spectrosc. Rev. 2004, 35, 25–93. [Google Scholar] [CrossRef]
Sample Designation | Load [wt.%] (a) | Composition (b), [vol.%] | Yield (c) [wt.%] | Real load (d) [wt.%] | |
---|---|---|---|---|---|
Metal | PA6 | ||||
PA6 | - | 0.0 | 100.0 | 56.0 | - |
Al10 | 10 | 9.2 | 90.8 | 45.1 | 19.4 |
Cu10 | 10 | 2.6 | 97.4 | 48.6 | 17.6 |
Mg10 | 10 | 8.8 | 91.2 | 48.9 | 16.5 |
Sample and ssNMR Experiment | Chemical Shift δ, ppm | |||||
---|---|---|---|---|---|---|
C1 | C2 + C3 | C4 | C5 | C6 | ||
PA6 | MAS | -a | 27.8 | -a | 36.2 | 173.5 |
CP/MAS | 42.8 | 29.7 | 26.0 | 36.2 | 172.8 | |
Al10 | MAS | -a | 28.1 | -a | 37.1 | 174.7 |
CP/MAS | 42.7 b | 29.4 b | -a | 36.6 b | 174.1 | |
Cu10 | MAS | -a | 27.9 | -a | 36.8 | 174.5 |
CP/MAS | 43.4 | 30.3 | 26.4 | 36.6 | 173.6 | |
Mg10 | MAS | -a | 28.0 | -a | 35.6 | 173.5 |
CP/MAS | 42.5 | 29.7 | -a | 36.4 | 173.0 |
Sample (Fitting Coef.) | Carbon | Chemical Shift, ppm | Variation of Chemical Shift, ppm | FWHM, ppm | Variation FWHM, ppm |
---|---|---|---|---|---|
PA6 (0.9986) | C4, C2 + C3 | 27.9 ± 0.1 | - | 8.01 | - |
C5 (a) | 35.8 ± 0.4 | - | 3.88 | - | |
C1, C5 | 39.3 ± 0.2 | - | 6.12 | - | |
C1 (b) | 41.6 ± 0.2 | - | 5.36 | - | |
Al10 (0.9986) | C4, C2 + C3 | 28.2 ± 0.1 | 0.3 | 9.15 | 1.14 |
C5 (a) | 36.1 ± 0.1 | 0.3 | 3.75 | −0.13 | |
C1, C5 | 39.3 ± 0.3 | 0.0 | 8.42 | 2.30 | |
C1 (b) | 46.7 ± 0.2 | 5.1 | 4.01 | −1.35 | |
Cu10 (0.9965) | C4, C2 + C3 | 27.9 ± 0.1 | 0.0 | 8.86 | 0.85 |
C5 (a) | 36.1 ± 0.3 | 0.3 | 3.40 | −0.48 | |
C1, C5 | 39.4 ± 0.4 | 0.1 | 6.53 | 0.41 | |
C1 (b) | 42.4 ± 0.2 | 0.8 | 5.48 | 0.12 | |
Mg10 (0.9918) | C4, C2 + C3 | 28.3 ± 0.1 | 0.4 | 11.72 | 3.71 |
C5 (a) | 35.9 ± 0.3 | 0.1 | 3.29 | −0.59 | |
C1, C5 | 39.3 ± 0.6 | 0.0 | 5.76 | −0.36 | |
C1 (b) | 43.8 ± 0.5 | 2.2 | 7.99 | 2.63 |
Sample (Fitting Coef.) | Carbon | Chemical Shift, ppm | Variation of Chemical Shift, ppm | FWHM, ppm | Variation FWHM, ppm | Area, % | , % (a) | , % (b) | , % (c) | , % |
---|---|---|---|---|---|---|---|---|---|---|
PA6 (0.9995) | C4 | 26.0 ± 0.1 | - | 2.83 | - | 9.70 | 35.86 | 39.4 | 39.4 | 44.5 |
C2, C3, C4 | 28.9 ± 0.2 | - | 9.29 | - | 42.38 | |||||
C2 + C3 | 29.7 ± 0.0 | - | 2.45 | - | 14.00 | |||||
C5 | 36.0 ± 0.0 | - | 2.19 | - | 8.39 | 46.29 | ||||
C1, C5 | 39.2 ± 0.2 | - | 7.87 | - | 18.22 | |||||
C1 | 42.9 ± 0.0 | - | 2.63 | - | 7.31 | |||||
Al10 (0.9996) | C4 | 27.5 ± 0.9 | 1.5 | 5.73 | 2.90 | 15.38 | 46.45 | 49.9 | 52.2 | 50.7 |
C2, C3, C4 | 28.3 ± 1.6 | −0.6 | 10.6 | 1.27 | 29.99 | |||||
C2 + C3 | 30.8 ± 0.3 | 1.1 | 4.18 | 1.72 | 10.63 | |||||
C5 | 36.3 ± 0.8 | 0.3 | 6.05 | 3.85 | 20.13 | 54.29 | ||||
C1, C5 | 42.3 ± 2.7 | 3.1 | 9.41 | 1.54 | 20.11 | |||||
C1 | 42.7± 0.2 | −0.2 | 3.83 | 1.20 | 3.76 | |||||
Cu10 (0.9980) | C4 | 26.1 ± 0.0 | 0.1 | 1.84 | −0.99 | 11.44 | 43.90 | 46.7 | 42.7 | 49.5 |
C2, C3, C4 | 28.8 ± 0.1 | −0.1 | 7.92 | −1.37 | 35.11 | |||||
C2 + C3 | 30.1 ± 0.0 | 0.4 | 1.93 | −0.52 | 16.04 | |||||
C5 | 36.3 ± 0.0 | 0.3 | 2.21 | 0.02 | 10.29 | 51.21 | ||||
C1, C5 | 40.0 ± 0.4 | 0.8 | 8.82 | 0.95 | 18.25 | |||||
C1 | 43.2 ± 0.0 | 0.3 | 2.28 | −0.25 | 8.87 | |||||
Mg10 (0.9993) | C4 | 25.8 ± 0.3 | −0.2 | 3.49 | 0.66 | 3.92 | 39.78 | 47.7 | 53.2 | 49.8 |
C2, C3, C4 | 27.8 ± 4.7 | −1.1 | 9.94 | 0.65 | 35.96 | |||||
C2 + C3 | 30.0 ± 1.0 | 0.3 | 5.47 | 3.02 | 19.84 | |||||
C5 | 36.0 ± 0.4 | 0.0 | 4.78 | 2.59 | 14.15 | 59.40 | ||||
C1, C5 | 40.0 ± 3.4 | 0.8 | 8.77 | 0.91 | 16.36 | |||||
C1 | 42.8 ± 3.8 | −0.1 | 5.79 | 3.16 | 9.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, F.M.; Nunes, T.G.; Dencheva, N.V.; Denchev, Z.Z. Structure and Molecular Dynamics in Metal-Containing Polyamide 6 Microparticles. Crystals 2022, 12, 1579. https://doi.org/10.3390/cryst12111579
Oliveira FM, Nunes TG, Dencheva NV, Denchev ZZ. Structure and Molecular Dynamics in Metal-Containing Polyamide 6 Microparticles. Crystals. 2022; 12(11):1579. https://doi.org/10.3390/cryst12111579
Chicago/Turabian StyleOliveira, Filipa M., Teresa G. Nunes, Nadya V. Dencheva, and Zlatan Z. Denchev. 2022. "Structure and Molecular Dynamics in Metal-Containing Polyamide 6 Microparticles" Crystals 12, no. 11: 1579. https://doi.org/10.3390/cryst12111579
APA StyleOliveira, F. M., Nunes, T. G., Dencheva, N. V., & Denchev, Z. Z. (2022). Structure and Molecular Dynamics in Metal-Containing Polyamide 6 Microparticles. Crystals, 12(11), 1579. https://doi.org/10.3390/cryst12111579