A Series of New Manganese(II) Polynuclear Complexes Based on Nitrothiacalix[4]arenes: The Study of Interplay between Macrocycle Platform Flexibility and Structural Diversity of Coordination Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Characterization Methods
2.2. Crystallization Conditions
2.2.1. Synthesis of [MnII4(di-NO2-TCA)2(DMF)4] 2DMF (1)
2.2.2. Synthesis of [MnII4(tetra-NO2-TCA)2(DMF)4] 4Et2O (2a)
2.2.3. Synthesis of [MnII4(tetra-NO2-TCA)2(DMF)8] (2b)
2.2.4. Synthesis of [MnII2(tetra-NO2-TCA)(bipy)2(DMF)2] (3)
2.3. Crystallographic Data Collection and Refinement
3. Results
3.1. Syntheses and General Aspects
3.2. Crystal Structure Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutsche, C.D. Calixarenes Revised: Monographs in Supramolecular Chemistry; The Royal Society of Chemistry: Cambridge, UK, 1998; Volume 6. [Google Scholar]
- Asfari, Z.; Böhmer, V.; Harrowfield, J.; Vicens, J. (Eds.) Calixarenes 2001; Kluwer Academic: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Hosseini, M.W. Calixarenes for Separations; Lumetta, G.J., Rogers, R.D., Gopalan, A.S., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2000. [Google Scholar]
- Kumagai, H.; Hasegawa, M.; Miyanari, S.; Sugawa, Y.; Sato, Y.; Hori, T.; Ueda, S.; Kamiyama, H.; Miyano, S. Facile synthesis of p-tert-butylthiacalix[4]arene by the reaction of p-tert-butylphenol with elemental sulfur in the presence of a base. Tetrahedron Lett. 1997, 38, 3971–3972. [Google Scholar] [CrossRef]
- Iki, N.; Kumagai, H.; Morohashi, N.; Ejima, K.; Hasegawa, M.; Miyanari, S.; Miyano, S. Selective oxidation of thiacalix[4]arenes to the sulfinyl- and sulfonylcalix[4]arenes and their coordination ability to metal ions. Tetrahedron Lett. 1998, 39, 7559–7562. [Google Scholar] [CrossRef]
- Asfari, Z.; Bilyk, A.; Bond, C.; Harrowfield, J.M.; Koutsantonis, G.A.; Lengkeek, N.; Mocerino, M.; Skelton, B.W.; Sobolev, A.N.; Strano, S.; et al. Factors influencing solvent adduct formation by calixarenes in the solid state. Org. Biomol. Chem. 2004, 2, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Akdas, H.; Bringel, L.; Graf, E.; Hosseini, M.W.; Mislin, G.; Pansanel, J.; De Cian, A.; Fischer, J. Thiacalixarenes: Synthesis and Structural Analysis of Thiacalix[4]arene and of p-tert-Butylthiacalix[4]arene. Tetrahedron Lett. 1998, 39, 2311–2314. [Google Scholar] [CrossRef]
- Mislin, G.; Graf, E.; Hosseini, M.W.; De Cian, A. Sulfone-calixarenes: A new class of molecular building block. J. Chem. Soc. Chem. Commun. 1998, 1345–1346. [Google Scholar] [CrossRef]
- Kajiwara, T.; Iki, N.; Yamashita, M. Transition metal and lanthanide cluster complexes constructed with thiacalix[n]arene and its derivatives. Coord. Chem. Rev. 2007, 251, 1734–1746. [Google Scholar] [CrossRef]
- Kajiwara, T.; Kobashi, T.; Shinagawa, R.; Ito, T.; Takaishi, S.; Yamashita, M.; Iki, N. Highly Symmetrical Tetranuclear Cluster Complexes Supported by p-tert-Butylsulfonylcalix[4]arene as a Cluster-Forming Ligand. Eur. J. Inorg. Chem. 2006, 1765–1770. [Google Scholar] [CrossRef]
- Taylor, S.M.; Karotsis, G.; McIntosh, R.D.; Kennedy, S.; Teat, S.J.; Beavers, C.M.; Wernsdorfer, W.; Piligkos, S.; Dalgarno, S.J.; Brechin, E.K. A Family of Calix[4]arene-Supported [MnIII2MnII2] Clusters. Chem. Eur. J. 2011, 17, 7521–7530. [Google Scholar] [CrossRef]
- Fuller, R.O.; Koutsantonis, G.A.; Ogden, M.I. Magnetic properties of calixarene-supported metal coordination clusters. Coord. Chem. Rev. 2020, 402, 213066. [Google Scholar] [CrossRef]
- Aldoshin, S.M.; Antipin, I.S.; Ovcharenko, V.I.; Solov’eva, S.E.; Bogomyakov, A.S.; Korchagin, D.V.; Shilov, G.V.; Yur’eva, E.A.; Mushenok, F.B.; Bozhenko, K.V.; et al. Synthesis, structure, and properties of a new representative of the family of calix[4]arene-containing [MnII2MnIII2]-clusters. Russ. Chem. Bull. 2013, 62, 536–542. [Google Scholar] [CrossRef]
- Karotsis, G.; Evangelisti, M.; Dalgarno, S.; Brechin, E. A Calix[4]arene 3d/4f Magnetic Cooler. Angew. Chem. Int. Ed. 2009, 48, 9928–9931. [Google Scholar] [CrossRef]
- Kongzhao, S.; Jiang, F.; Qian, J.; Zhou, K.; Pang, J.; Basahel, S.; Mokhtar, M.; AL-Thabaiti, S.A.; Hong, M. Calix[4]arene-Based Clusters with μ9-Carbonato-Bridged CoII9 Cores. Inorg. Lett. 2014, 1, 1–8. Available online: http://www.pubs.iscience.in/journal/index.php/il/article/view/116/64 (accessed on 14 January 2014).
- Karotsis, G.; Kennedy, S.; Dalgarno, S.J.; Brechin, E.K. Calixarene supported enneanuclear Cu(II) clusters. Chem. Commun. 2010, 46, 3884–3886. [Google Scholar] [CrossRef]
- Sanz, S.; McIntosh, R.D.; Beavers, C.M.; Teat, S.J.; Evangelisti, M.; Brechin, E.K.; Dalgarno, S.J. Calix[4]arene-supported rare earth octahedra. Chem. Commun. 2012, 48, 1449–1451. [Google Scholar] [CrossRef] [Green Version]
- Xing, T.; Frese, J.W.A.; Derbyshire, M.; Glenister, M.A.; Elsegood, M.R.J.; Redshaw, C. Trinuclear zinc calix[4]arenes: Synthesis, structure, and ring opening polymerization studies. Dalton Trans. 2022, 51, 11776–11786. [Google Scholar] [CrossRef]
- Desroches, C.; Pilet, G.; Borshch, S.A.; Parola, S.; Luneau, D. Tetranuclear Manganese(II) Complexes of Thiacalixarene Macrocycles with Trigonal Prismatic Six-Coordinate Geometries: Synthesis, Structure, and Magnetic Properties. Inorg. Chem. 2005, 44, 9112–9120. [Google Scholar] [CrossRef]
- Xiong, K.-C.; Jiang, F.-L.; Gai, Y.-L.; Yuan, D.-Q.; Han, D.; Ma, J.; Zhang, S.-Q.; Hong, M.-C. Chlorine-Induced Assembly of a Cationic Coordination Cage with a μ5-Carbonato-Bridged MnII24 Core. Chem. Eur. J. 2012, 18, 5536–5540. [Google Scholar] [CrossRef]
- Guan, Z.-J.; Zeng, J.-L.; Nan, Z.-A.; Wan, X.-K.; Lin, Y.-M.; Wang, Q.-M. Thiacalix[4]arene: New protection for metal nanoclusters. Sci. Adv. 2016, 2, e160032. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Su, H.F.; Gong, Y.W.; Qu, Q.P.; Bi, Y.F.; Tung, C.H.; Sun, D.; Zheng, L.S. A hierarchically assembled 88-nuclei silver-thiacalix[4]arene nanocluster. Nat. Commun. 2020, 11, 308. [Google Scholar] [CrossRef] [Green Version]
- Aldoshin, S.M.; Antipin, I.S.; Kniazeva, M.V.; Korchagin, D.V.; Morgunov, R.B.; Ovsyannikov, A.S.; Palii, A.V.; Sanina, N.A.; Shilov, G.V.; Solovieva, S.E. Synthesis, Structure and Magnetic Properties of Mn2Tb2 Tetranuclear Complex with p-tert-Butylthiacalix[4]arene. Isr. J. Chem. 2020, 60, 600–606. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Sheng, T.-P.; Li, C.; Wang, Z.; Dai, F.-R.; Chen, Z.-N. Iodine Adsorption via Porous Molecular Solids Based on Coordination Containers Derived from Naphthalene-1,8-dicarboxylate. Cryst. Growth Des. 2022, 22, 3182–3189. [Google Scholar] [CrossRef]
- Bi, Y.; Wang, X.-T.; Liao, W.; Wang, X.; Deng, R.; Zhang, H.; Gao, S. Thiacalix[4]arene-Supported Planar Ln4 (Ln = TbIII, DyIII) Clusters: Toward Luminescent and Magnetic Bifunctional Materials. Inorg. Chem. 2009, 48, 11743–11747. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-M.; Zhang, D.-Q.; Hao, X.; Zhu, D.-B. Syntheses, Crystal Structures, and Magnetic Properties of Two p-tert-Butylsulfonylcalix[4]arene Supported Cluster Complexes with a Totally Disordered Ln4(OH)4 Cubane Core. Cryst. Growth Des. 2012, 12, 2948–2954. [Google Scholar] [CrossRef]
- Kajiwara, T.; Yokozawa, S.; Ito, T.; Iki, N.; Morohashi, N.; Miyano, S. Sulfonylcalix[4]arene as a Bis-Tridentate Facial Ligand: Syntheses and Structures of Dinuclear Complexes, [M2(L)(H2O)2(dmf)4] (M = Co(II), Ni(II); H4L = p-tert-Butylsulfonylcalix[4]arene). Chem. Lett. 2001, 30, 6–7. [Google Scholar] [CrossRef] [Green Version]
- Lamouchi, M.; Jeanneau, E.; Novitchi, G.; Luneau, G.; Brioude, A.; Desroches, C. Polynuclear Complex Family of Cobalt(II)/Sulfonylcalixarene: One- Pot Synthesis of Cluster Salt [Co14II] + [Co4II]− and Field-Induced Slow Magnetic Relaxation in a Six-Coordinate Dinuclear Cobalt(II)/Sulfonylcalixarene Complex. Inorg. Chem. 2014, 53, 63–72. [Google Scholar] [CrossRef]
- Ovsyannikov, A.; Solovieva, S.; Antipin, I.; Ferlay, S. Coordination Polymers based on calixarene derivatives: Structures and properties. Coord. Chem. Rev. 2017, 352, 151–186. [Google Scholar] [CrossRef]
- Ovsyannikov, A.S.; Khariushin, I.V.; Solovieva, S.E.; Antipin, I.S.; Komiya, H.; Marets, N.; Tanaka, H.; Ohmagari, H.; Hasegawa, M.; Zakrzewski, J.J.; et al. Mixed Tb/Dy coordination ladders based on tetra(carboxymethyl)thiacalix[4]arene: A new avenue towards luminescent molecular nanomagnets. RSC Adv. 2020, 10, 11755–11765. [Google Scholar] [CrossRef] [Green Version]
- Ovsyannikov, A.S.; Ferlay, S.; Solovieva, S.E.; Antipin, I.S.; Konovalov, A.I.; Kyritsakas, N.; Hosseini, M.W. Molecular tectonics: High dimensional coordination networks based on methylenecarboxylate-appended tetramercaptothiacalix[4]arene in the 1,3-alternate conformation. CrystEngComm 2018, 20, 1130–1140. [Google Scholar] [CrossRef]
- Suffren, Y.; O’Toole, N.; Hauser, A.; Jeanneau, E.; Brioude, A.; Desroches, C. Discrete Polynuclear Manganese(II) Complexes with Thiacalixarene Ligands: Synthesis, Structures and Photophysical Properties. Dalton Trans. 2015, 44, 7991–8000. [Google Scholar] [CrossRef]
- O’Toole, N.; Lecourt, C.; Suffren, Y.; Hauser, A.; Khrouz, L.; Jeanneau, E.; Brioude, A.; Luneau, D.; Desroches, C. Photogeneration of Manganese(III) from Luminescent Manganese(II) Complexes with Thiacalixarene Ligands: Synthesis, Structures and Photophysical Properties. Eur. J. Inorg. Chem. 2019, 73–78. [Google Scholar] [CrossRef]
- Lecourt, C.; Suffren, Y.; Jeanneau, E.; Luneau, D.; Desroches, C. Mono-, Di-, and Tetranuclear Manganese(II) Complexes with p-Phenylsulfonylcalix[4]arene Macrocycles as Ligand Antennas: Synthesis, Structures, and Emission Properties. Cryst. Growth Des. 2022, 22, 2279–2288. [Google Scholar] [CrossRef]
- Lamouchi, M.; Jeanneau, E.; Pillonnet, A.; Brioude, A.; Martini, M.; Stéphan, O.; Meganem, F.; Novitchi, G.; Luneau, D.; Desroches, C. Tetranuclear Manganese(II) Complexes of Sulfonylcalix[4]Arene Macrocycles: Synthesis, Structure, Spectroscopic and Magnetic Properties. Dalton Trans. 2012, 41, 2707–2713. [Google Scholar] [CrossRef]
- Hang, X.; Bi, Y. Thiacalix[4]arene-supported molecular clusters for catalytic applications. Dalton Trans. 2021, 50, 3749–3758. [Google Scholar] [CrossRef]
- Bi, Y.; Du, S.; Liao, W. Thiacalixarene-based nanoscale polyhedral coordination cages. Coord. Chem. Rev. 2014, 276, 61–72. [Google Scholar] [CrossRef]
- Geng, D.; Han, X.; Bi, Y.; Qin, Y.; Li, Q.; Huang, L.; Zhou, K.; Song, L.; Zheng, Z. Merohedral icosahedral M48 (M ¼ CoII, NiII) cage clusters supported by thiacalix[4]arene. Chem. Sci. 2018, 9, 8535–8541. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Li, E.; Wang, K.; Guan, Z.-J.; He, H.-H.; Zhang, L.; Zhou, H.-C.; Huang, F.; Fang, Y. Organo-macrocycle-containing hierarchical metal–organic frameworks and cages: Design, structures, and applications. Chem. Soc. Rev. 2022, 51, 8378–8405. [Google Scholar] [CrossRef]
- Khariushin, I.V.; Ovsyannikov, A.S.; Baudron, S.A.; Ward, J.S.; Kiesilä, A.; Rissanen, K.; Kalenius, E.; Kovalenko, K.A.; Fedin, V.P.; Solovieva, S.E.; et al. Selective gas adsorption by calixarene-based porous octahedral M32 coordination cages. Chem. Commun. 2022, 58, 13628–13631. [Google Scholar] [CrossRef]
- Kniazeva, M.V.; Ovsyannikov, A.S.; Nowicka, B.; Kyritsakas, N.; Samigullina, A.I.; Gubaidullin, A.T.; Islamov, D.R.; Dorovatovskii, P.V.; Popova, E.V.; Kleshnina, S.R.; et al. Porous nickel and cobalt hexanuclear ring-like clusters built from two different kind of calixarene ligands—New molecular traps for small volatile molecules. CrystEngComm 2022, 24, 330–340. [Google Scholar] [CrossRef]
- Kniazeva, M.V.; Ovsyannikov, A.S.; Samigullina, A.I.; Islamov, D.R.; Gubaidullin, A.T.; Dorovatovskii, P.V.; Lazarenko, V.A.; Solovieva, S.E.; Antipin, I.S.; Ferlay, S. Impact of flexible succinate connectors on the formation of tetrasulfonylcalix[4]arene based nano-sized polynuclear cages: Structural diversity and induced chirality study. CrystEngComm 2022, 24, 628–638. [Google Scholar] [CrossRef]
- Pullen, S.; Tessarolo, J.; Clever, G.H. Increasing structural and functional complexity in self-assembled coordination cages. Chem. Sci. 2021, 12, 7269–7293. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Chen, M.; Han, X.; Bi, Y.; Huang, L.; Zhou, K.; Zheng, Z. Thiacalix[4]arene-supported tetradecanuclear cobalt nanocage cluster as precursor to synthesize CoO/Co9S8@CN composite for supercapacitor Application. Inorg. Chem. Front. 2018, 5, 1329–1335. [Google Scholar] [CrossRef]
- Liu, M.; Liao, W. Bridging calixarene-based {Co4} units into a square or belt with aromatic dicarboxylic acids. CrystEngComm 2012, 14, 5727–5729. [Google Scholar] [CrossRef]
- Kniazeva, M.V.; Ovsyannikov, A.S.; Islamov, D.R.; Samigullina, A.I.; Gubaidullin, A.T.; Dorovatovskii, P.V.; Solovieva, S.E.; Antipin, I.S.; Ferlay, S. Crystalline Assembly and Solvent-induced Solid-state Transformation of 1D Zigzag Chains Based on Sulfonylcalix[4]arene Trinuclear Co(II) and Zn(II) Clusters. Eur. J. Inorg. Chem. 2022, 32, e202200464. [Google Scholar] [CrossRef]
- Su, K.; Jiang, F.; Qian, J.; Pang, J.; Hu, F.; Bawaked, S.M.; Mokhtar, M.; Al-Thabaitic, S.A. Bridging different Co4–calix[4]arene building blocks into grids, cages and 2D polymers with chiral camphoric acid. CrystEngComm 2015, 17, 1750–1753. [Google Scholar] [CrossRef]
- Huang, C.; Liao, W. A porous 2D cobalt-sulfonylcalix[4]arene coordination polymer for gas adsorption. J. Mol. Struct. 2021, 1237, 130392. [Google Scholar] [CrossRef]
- Hu, X.; Shi, H.; Shi, X.; Zhu, Z.; Sun, Q.; Li, Y.; Yang, H. Selective nitration of thiacalix[4]arene and an investigation of its acid–base properties with a chemometric method. Bull. Chem. Soc. J. 2005, 78, 138–141. [Google Scholar] [CrossRef]
- Hu, X.; Zhu, Z.; Shen, T.; Shi, X.; Ren, J.; Sun, Q. Synthesis of the tetranitro derivative of thiacalix[4]arene and its acid-base properties. Can. J. Chem. 2004, 82, 1266–1270. [Google Scholar] [CrossRef]
- Lazarenko, V.A.; Dorovatovskii, P.V.; Zubavichus, Y.V.; Burlov, A.S.; Koshchienko, Y.V.; Vlasenko, V.G.; Khrustalev, V.N. High-throughput small-molecule crystallography at the ‘Belok’ beamline of the Kurchatov synchrotron radiation source: Transition metal complexes with azomethine ligands as a case study. Crystals 2017, 7, 325. [Google Scholar] [CrossRef] [Green Version]
- Svetogorov, R.D.; Dorovatovskii, P.V.; Lazarenko, V.A. Belok/XSA diffraction beamline for studying crystalline samples at Kurchatov Synchrotron Radiation Source. Cryst. Res. Technol. 2020, 55, 1900184. [Google Scholar] [CrossRef]
- Kabsch, W. XDS. Acta Crystallogr. 2010, D66, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. SHELXT: Integrating space group determination and structure solution. Acta Crystallogr. 2015, A71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H.J. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Spek, A.L. PLATON, a Multipurpose Crystallographic Tool; Utrecht University: Utrecht, The Netherlands, 2001. [Google Scholar]
- Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr. 2007, A64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G. SADABS, Program for Empirical X-ray Absorption Correction; Bruker-Nonius: Madison, WI, USA, 2004. [Google Scholar]
- Sheldrick, G. SHELXTL V.6.12, Structure Determination Software Suite; Bruker AXS: Madison, WI, USA, 2000. [Google Scholar]
- APEX3 Program, Version 2018.7-2; BrukerAXS Inc.: Madison, WI, USA, 2016.
- Farrugia, L.J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 32, 837–838. [Google Scholar] [CrossRef]
- Macrae, C.F.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, M.; Van De Streek, J. Mercury: Visualization and analysis of crystal structures. J. Appl. Crystallogr. 2006, 39, 453–457. [Google Scholar] [CrossRef] [Green Version]
- Llunell, M.; Casanova, D.; Cirera, J.; Bofill, J.M.; Alemany, P.; Alvarez, S.; Pinsky, M.; Avnir, D. SHAPE; Version 2.3; University of Barcelona: Barcelona, Spain; Hebrew University of Jerusalem: Jerusalem, Israel, 2013. [Google Scholar]
- Bi, Y.; Liao, W.; Wang, X.; Wang, X.; Zhang, H. Mn4-hinged bithiacalix[4]arenes accommodating fullerenes. Dalton Trans. 2011, 40, 1849–1851. [Google Scholar] [CrossRef]
- Neupert-Laves, K.; Dobler, M. Crystal Structure of Metal-Ion Complexes with neutral noncyclic Ionophores. Helv. Chim. Acta 1977, 60, 1861–1871. [Google Scholar] [CrossRef]
- Reid, H.O.; Kahwa, I.A.; White, A.J.; Williams, D.J. Intense Photosensitized Emission from Stoichiometric Compounds Featuring Mn2+ in Seven- and Eightfold Coordination Environments. Inorg. Chem. 1998, 37, 3868–3873. [Google Scholar] [CrossRef]
- Dang, D.B.; Bai, Y.; Duan, C. Crystal Structure and Magnetic Properties of a Novel Octa-coordinated Manganese(II) Complex. J. Chem. Crystallogr. 2008, 38, 557–560. [Google Scholar] [CrossRef]
- Wang, S.; Westmoreland, T.D. Correlation of Relaxivity with Coordination Number in Six-, Seven-, and Eight-Coordinate Mn(II) Complexes of Pendant-Arm Cyclen Derivatives. Inorg. Chem. 2009, 48, 719–727. [Google Scholar] [CrossRef] [Green Version]
- Dube, K.S.; Harrop, T.C. Structure and properties of an eight-coordinate Mn(ii) complex that demonstrates a high water relaxivity. Dalton Trans. 2011, 40, 7496–7498. [Google Scholar] [CrossRef] [PubMed]
- Cieslik, P.; Comba, P.; Dittmar, B.; Ndiaye, D.; Tóth, É.; Velmurugan, G.; Wadepohl, H. Exceptional Manganese(II) Stability and Manganese(II)/Zinc(II) Selectivity with Rigid Polydentate Ligands. Angew. Chem. Int. Ed. 2022, 61, e202115580. [Google Scholar] [CrossRef] [PubMed]
- Aldoshin, S.M.; Antipin, I.S.; Solovieva, S.E.; Sanina, N.A.; Korchagin, D.V.; Shilov, G.V.; Mushenok, F.B.; Utenyshev, A.N.; Bozhenko, K.V. Experimental and theoretical study of the influence of peripheral environment on magnetic properties of tetranuclear manganese skeleton in new representatives of calix[4]arene-containing [MnII2MnIII2] clusters. J. Mol. Struct. 2015, 1081, 217–223. [Google Scholar] [CrossRef]
Compound Name | 1 | 2a | 2b | 3 |
---|---|---|---|---|
Empirical formula | C60H48Mn4N8O20S8, 2(C3H7NO) | C60H44Mn4N12O28S8, 4(C4H10O) | C72H72Mn4N16O32S8, C3H7NO | C50H38Mn2N10O14S4 |
Formula weight (g/mol) | 1823.49 | 2153.79 | 2222.79 | 1241.02 |
Wavelength, Å | 0.745 (synchrotron) | 0.7454 (synchrotron) | 1.54178 | 0.71073 |
Temperature | 100(2) | 100(2) | 100(1) | 100(2) |
Crystal system | monoclinic | monoclinic | orthorhombic | monoclinic |
Space group | C2/c | P21/n | Pca21 | P21/n |
a/Å | 34.619(7) | 18.524(4) | 30.9394(3) | 11.6426(14) |
b/Å | 15.323(3) | 12.704(3) | 16.75530(10) | 10.3239(12) |
c/Å | 18.704(4) | 19.494(4) | 18.9143(2) | 21.412(2) |
α/° | 90 | 90 | 90 | 90 |
β/° | 120.86(3) | 103.59(3) | 90 | 94.661(3) |
γ/° | 90 | 90 | 90 | 90 |
V, Ǻ3 | 8517(4) | 4459.0(16) | 9805.15(15) | 2565.2(5) |
Z, Z′ | 4, 0.5 | 2, 0.5 | 4 | 2, 0.5 |
ρcalc g/cm3 | 1.422 | 1.604 | 1.506 | 1.607 |
μ, cm−1 | 0.958 | 0.941 | 6.443 | 7.34 |
F(000) | 3728.0 | 2216.0 | 4560.0 | 1268 |
Crystal size, mm | 0.32 × 0.21 × 0.14 | 0.33 × 0.25 × 0.15 | 0.19 × 0.15 × 0.12 | 0.34 × 0.15 × 0.13 |
2θ range for data collection/° | 3.134 ≤ 2θ ≤ 61.986 | 4.048 ≤ 2θ ≤ 62.046 | 5.274 ≤ 2θ ≤ 152.986 | 3.818 ≤ 2θ ≤ 61.094 |
Index ranges | −47 ≤ h ≤ 47 −20 ≤ k ≤ 20 −25 ≤ l ≤ 25 | −25 ≤ h ≤ 25 −17 ≤ k ≤ 15 −26 ≤ l ≤ 26 | −34 ≤ h ≤ 39, −21 ≤ k ≤ 18, −22 ≤ l ≤ 22 | −16 ≤ h ≤ 16 −14 ≤ k ≤ 14, −30 ≤ l ≤ 30 |
Reflections collected/independ. | 48,978/11,583 | 43,236/12,068 | 55,374/16,302 | 44,904/7836 |
Rint | 0.0596 | 0.0418 | 0.0388 | 0.0447 |
Completeness to θmax/% | 98.3 | 97.8 | 97.1 | 99.7 |
Data/restraints/parameters | 11,583/2/516 | 12,068/0/603 | 16,302/1/1253 | 7836/0/363 |
Goodness-of-fit on F2 | 1.046 | 1.020 | 1.078 | 1.055 |
Final R indexes [I > 2σ (I)] R1/wR2 | 0.0542/0.1469 | 0.0390/0.0967 | 0.0428/0.1171 | 0.0363/0.0908 |
Final R indexes (all data) | 0.0798/0.1607 | 0.0546/0.1051 | 0.0441/0.1181 | 0.0453/0.1000 |
ρmax/ρmin (eǺ−3) | 0.57/−0.62 | 0.48/−0.79 | 0.56/−0.48 | 0.553/−0.640 |
Flack parameter | - | - | 0.361(3) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ovsyannikov, A.S.; Strelnikova, I.V.; Shutilov, I.D.; Islamov, D.R.; Dorovatovskii, P.V.; Gubaidullin, A.T.; Agarkov, A.S.; Solovieva, S.E.; Antipin, I.S. A Series of New Manganese(II) Polynuclear Complexes Based on Nitrothiacalix[4]arenes: The Study of Interplay between Macrocycle Platform Flexibility and Structural Diversity of Coordination Compounds. Crystals 2023, 13, 1017. https://doi.org/10.3390/cryst13071017
Ovsyannikov AS, Strelnikova IV, Shutilov ID, Islamov DR, Dorovatovskii PV, Gubaidullin AT, Agarkov AS, Solovieva SE, Antipin IS. A Series of New Manganese(II) Polynuclear Complexes Based on Nitrothiacalix[4]arenes: The Study of Interplay between Macrocycle Platform Flexibility and Structural Diversity of Coordination Compounds. Crystals. 2023; 13(7):1017. https://doi.org/10.3390/cryst13071017
Chicago/Turabian StyleOvsyannikov, Alexander S., Iuliia V. Strelnikova, Ilya D. Shutilov, Daut R. Islamov, Pavel V. Dorovatovskii, Aidar T. Gubaidullin, Artem S. Agarkov, Svetlana E. Solovieva, and Igor S. Antipin. 2023. "A Series of New Manganese(II) Polynuclear Complexes Based on Nitrothiacalix[4]arenes: The Study of Interplay between Macrocycle Platform Flexibility and Structural Diversity of Coordination Compounds" Crystals 13, no. 7: 1017. https://doi.org/10.3390/cryst13071017
APA StyleOvsyannikov, A. S., Strelnikova, I. V., Shutilov, I. D., Islamov, D. R., Dorovatovskii, P. V., Gubaidullin, A. T., Agarkov, A. S., Solovieva, S. E., & Antipin, I. S. (2023). A Series of New Manganese(II) Polynuclear Complexes Based on Nitrothiacalix[4]arenes: The Study of Interplay between Macrocycle Platform Flexibility and Structural Diversity of Coordination Compounds. Crystals, 13(7), 1017. https://doi.org/10.3390/cryst13071017