Electrochemical Study of Polymorphic MnO2 in Rechargeable Aqueous Zinc Batteries
Abstract
:1. Introduction
2. Experimental Methods
2.1. Sample Synthesis
2.2. Sample Characterization
2.3. Electrochemical Measurement
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, T.; Nam, G.; Liu, K.; Wang, J.-H.; Zhao, B.; Ding, Y.; Soule, L.; Avdeev, M.; Luo, Z.; Zhang, W.; et al. A niobium oxide with a shear structure and planar defects for high-power lithium ion batteries. Energy Environ. Sci. 2022, 15, 254–264. [Google Scholar] [CrossRef]
- Oh, H.S.; Jeong, H.M.; Park, J.H.; Ock, I.-W.; Kang, J.K. Hierarchical Si hydrogel architecture with conductive polyaniline channels on sulfonated-graphene for high-performance Li ion battery anodes having a robust cycle life. J. Mater. Chem. A 2015, 3, 10238–10242. [Google Scholar] [CrossRef]
- Yuan, Y.; Sharpe, R.; He, K.; Li, C.; Saray, M.T.; Liu, T.; Yao, W.; Cheng, M.; Jin, H.; Wang, S.; et al. Understanding intercalation chemistry for sustainable aqueous zinc–manganese dioxide batteries. Nat. Sustain. 2022, 5, 890–898. [Google Scholar] [CrossRef]
- Or, T.; Gourley, S.W.D.; Kaliyappan, K.; Yu, A.; Chen, Z. Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook. Carbon Energy 2020, 2, 6–43. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Zhang, D.; Gu, C.; Wang, X.; Wang, S.; Zhang, X.; Qin, J.; Wu, Z.S. Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries. Adv. Energy Mater. 2021, 11, 2101299. [Google Scholar] [CrossRef]
- Cresce, A.; Xu, K. Aqueous lithium-ion batteries. Carbon Energy 2021, 3, 721–751. [Google Scholar] [CrossRef]
- Yang, D.; Chen, D.; Jiang, Y.; Ang, E.H.; Feng, Y.; Rui, X.; Yu, Y. Carbon-based materials for all-solid-state zinc–air batteries. Carbon Energy 2020, 3, 50–65. [Google Scholar] [CrossRef]
- He, X.; Zhang, Y.; Wang, J.; Li, J.; Yu, L.; Zhou, F.; Li, J.; Shen, X.; Wang, X.; Wang, S.; et al. Biomass-derived Fe2N@NCNTs from bioaccumulation as an efficient electrocatalyst for oxygen reduction and Zn–Air battery. ACS Sustain. Chem. Eng. 2022, 10, 9105–9112. [Google Scholar] [CrossRef]
- Javed, M.S.; Mateen, A.; Ali, S.; Zhang, X.; Hussain, I.; Imran, M.; Shah, S.S.A.; Han, W. The Emergence of 2D MXenes Based Zn-Ion Batteries: Recent Development and Prospects. Small 2022, 18, e2201989. [Google Scholar] [CrossRef]
- Chodankar, N.R.; Patil, S.J.; Lee, S.; Lee, J.; Hwang, S.K.; Shinde, P.A.; Bagal, I.V.; Karekar, S.V.; Seeta Rama Raju, G.; Shanmugam Ranjith, K.; et al. High energy superstable hybrid capacitor with a self-regulated Zn/electrolyte interface and 3D graphene-like carbon cathode. InfoMat 2022, 4, e12344. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Y.; Zhang, Q.; Liang, Z.; Gu, L.; Guo, W.; Zhu, B.; Guo, S.; Zou, R. Metal-organic framework-derived Fe/Cu-substituted Co nanoparticles embedded in CNTs-grafted carbon polyhedron for Zn-air batteries. Carbon Energy 2020, 2, 283–293. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Hong, X.; Su, Y.; Luo, W.; Yu, R.; Wu, J.; Hensen, E.J.M.; Mai, L.; Cao, Y. Sub-Nanometer Confined Ions and Solvent Molecules Intercalation Capacitance in Microslits of 2D Materials. Small 2021, 17, e2104649. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Gu, J.; Cao, Z.; Wang, H.; Zhao, Q.; Ye, Y.; Li, B.; Chen, W.; Liu, C.; Yang, S. 2D non-Van Der Waals transition-metal chalcogenide layers derived from vanadium-based MAX phase for ultrafast Zinc storage. Adv. Energy Mater. 2022, 12, 2200943. [Google Scholar] [CrossRef]
- Pan, Q.; Dong, R.; Lv, H.; Sun, X.; Song, Y.; Liu, X.-X. Fundamental understanding of the proton and zinc storage in vanadium oxide for aqueous zinc-ion batteries. Chem. Eng. J. 2021, 419, 129491. [Google Scholar] [CrossRef]
- Zeng, Y.; Lu, X.F.; Zhang, S.L.; Luan, D.; Li, S.; Lou, X.W.D. Construction of Co-Mn prussian blue analog hollow spheres for efficient aqueous Zn-ion batteries. Angew. Chem. Int. Ed. Engl. 2021, 60, 22189–22194. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Li, Q.; Hong, C.; Yang, G.; Wang, C. Bi doping-enhanced reversible-phase transition of alpha-MnO2 raising the cycle capability of aqueous Zn-Mn batteries. ACS Appl. Mater. Interfaces 2021, 13, 55208–55217. [Google Scholar] [CrossRef]
- Patil, S.J.; Chodankar, N.R.; Hwang, S.-K.; Raju, G.S.R.; Ranjith, K.S.; Huh, Y.S.; Han, Y.-K. Ultra-stable flexible Zn-ion capacitor with pseudocapacitive 2D layered niobium oxyphosphides. Energy Storage Mater. 2022, 45, 1040–1051. [Google Scholar] [CrossRef]
- Javed, M.S.; Lei, H.; Wang, Z.; Liu, B.-t.; Cai, X.; Mai, W. 2D V2O5 nanosheets as a binder-free high-energy cathode for ultrafast aqueous and flexible Zn-ion batteries. Nano Energy 2020, 70, 104573. [Google Scholar] [CrossRef]
- Liu, Z.; Pulletikurthi, G.; Endres, F. A prussian blue/zinc secondary battery with a bio-ionic liquid-water mixture as electrolyte. ACS Appl. Mater. Interfaces 2016, 8, 12158–12164. [Google Scholar] [CrossRef]
- Liu, C.; Neale, Z.; Zheng, J.; Jia, X.; Huang, J.; Yan, M.; Tian, M.; Wang, M.; Yang, J.; Cao, G. Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 2273–2285. [Google Scholar] [CrossRef]
- Jenkins, T.; Alarco, J.A.; Cowie, B.; Mackinnon, I.D.R. Validating the electronic structure of vanadium phosphate cathode materials. ACS Appl. Mater. Interfaces 2021, 13, 45505–45520. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Wu, D.; Sadique, N.; Quilty, C.D.; Wu, L.; Marschilok, A.C.; Takeuchi, K.J.; Takeuchi, E.S.; Zhu, Y. Unraveling the dissolution-mediated reaction mechanism of alpha-MnO2 cathodes for aqueous Zn-ion batteries. Small 2020, 16, e2005406. [Google Scholar] [CrossRef]
- Ren, Y.; Meng, F.; Zhang, S.; Ping, B.; Li, H.; Yin, B.; Ma, T. CNT@MnO2 composite ink toward a flexible 3D printed micro-zinc-ion battery. Carbon Energy 2022, 4, 446–457. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, C.; Song, H.; Zhang, C.; Liu, Y.; Nan, X.; Cao, G. Mesocrystal MnO cubes as anode for Li-ion capacitors. Nano Energy 2016, 22, 290–300. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Yuan, Y.; Yao, W.; You, K.; Dahbi, M.; Alami, J.; Amine, K.; Shahbazian-Yassar, R.; Lu, J. Atomistic insights of irreversible Li(+) intercalation in MnO2 electrode. Angew. Chem. Int. Ed. Engl. 2022, 61, e202113420. [Google Scholar] [PubMed]
- Liu, C.; Li, Q.; Sun, H.; Wang, Z.; Gong, W.; Cong, S.; Yao, Y.; Zhao, Z. MOF-derived vertically stacked Mn2O3@C flakes for fiber-shaped zinc-ion batteries. J. Mater. Chem. A 2020, 8, 24031–24039. [Google Scholar] [CrossRef]
- Gao, X.; Wu, H.; Li, W.; Tian, Y.; Zhang, Y.; Wu, H.; Yang, L.; Zou, G.; Hou, H.; Ji, X. H(+) -insertion boosted alpha-MnO2 for an aqueous Zn-ion battery. Small 2020, 16, e1905842. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Q.; Wang, Y.; Xu, C.; Bi, J.; Mu, D.; Wu, B.; Wu, F. Modifying γ-MnO2 to enhance the electrochemical performance of lithium-sulfur batteries. Chem. Eng. J. 2021, 421, 129782. [Google Scholar] [CrossRef]
- Ding, S.; Zhang, M.; Qin, R.; Fang, J.; Ren, H.; Yi, H.; Liu, L.; Zhao, W.; Li, Y.; Yao, L.; et al. Oxygen-deficient beta-MnO2@graphene oxide cathode for high-rate and long-life aqueous zinc ion batteries. Nanomicro Lett. 2021, 13, 173. [Google Scholar]
- Liu, M.; Zhao, Q.; Liu, H.; Yang, J.; Chen, X.; Yang, L.; Cui, Y.; Huang, W.; Zhao, W.; Song, A.; et al. Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery. Nano Energy 2019, 64, 103942. [Google Scholar] [CrossRef]
- Byles, B.W.; Cullen, D.A.; More, K.L.; Pomerantseva, E. Tunnel structured manganese oxide nanowires as redox active electrodes for hybrid capacitive deionization. Nano Energy 2018, 44, 476–488. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, C.; Byles, B.W.; Yao, W.; Song, B.; Cheng, M.; Huang, Z.; Amine, K.; Pomerantseva, E.; Shahbazian-Yassar, R.; et al. Ordering heterogeneity of [MnO6] octahedra in tunnel-structured MnO2 and its influence on ion storage. Joule 2019, 3, 471–484. [Google Scholar] [CrossRef] [Green Version]
- Gupta, G.; Selvakumar, K.; Lakshminarasimhan, N.; Senthil Kumar, S.M.; Mamlouk, M. The effects of morphology, microstructure and mixed-valent states of MnO2 on the oxygen evolution reaction activity in alkaline anion exchange membrane water electrolysis. J. Power Sources 2020, 461, 228131. [Google Scholar] [CrossRef]
- Gu, Y.; Min, Y.; Li, L.; Lian, Y.; Sun, H.; Wang, D.; Rummeli, M.H.; Guo, J.; Zhong, J.; Xu, L.; et al. Crystal splintering of β-MnO2 induced by interstitial Ru doping toward reversible oxygen conversion. Chem. Mater. 2021, 33, 4135–4145. [Google Scholar] [CrossRef]
- Yao, W.; Odegard, G.M.; Huang, Z.; Yuan, Y.; Asayesh-Ardakani, H.; Sharifi-Asl, S.; Cheng, M.; Song, B.; Deivanayagam, R.; Long, F.; et al. Cations controlled growth of β-MnO2 crystals with tunable facets for electrochemical energy storage. Nano Energy 2018, 48, 301–311. [Google Scholar] [CrossRef]
- Chao, D.; Zhou, W.; Ye, C.; Zhang, Q.; Chen, Y.; Gu, L.; Davey, K.; Qiao, S.Z. An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. Engl. 2019, 58, 7823–7828. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhan, C.; He, K.; Chen, H.; Yao, W.; Sharifi-Asl, S.; Song, B.; Yang, Z.; Nie, A.; Luo, X.; et al. The influence of large cations on the electrochemical properties of tunnel-structured metal oxides. Nat. Commun. 2016, 7, 13374. [Google Scholar] [CrossRef]
- Gu, Y.; Yan, G.; Lian, Y.; Qi, P.; Mu, Q.; Zhang, C.; Deng, Z.; Peng, Y. MnIII-enriched α-MnO2 nanowires as efficient bifunctional oxygen catalysts for rechargeable Zn-air batteries. Energy Storage Mater. 2019, 23, 252–260. [Google Scholar] [CrossRef]
- Chen, H.; Dai, C.; Xiao, F.; Yang, Q.; Cai, S.; Xu, M.; Fan, H.J.; Bao, S.J. Reunderstanding the reaction mechanism of aqueous Zn-Mn batteries with sulfate electrolytes: Role of the zinc sulfate hydroxide. Adv. Mater. 2022, 34, e2109092. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, P.; Liang, J.; Xia, X.; Ren, L.; Song, L.; Liu, W.; Sun, X. Uncovering sulfur doping effect in MnO2 nanosheets as an efficient cathode for aqueous zinc ion battery. Energy Storage Mater. 2022, 47, 424–433. [Google Scholar] [CrossRef]
- Wu, D.; Housel, L.M.; Kim, S.J.; Sadique, N.; Quilty, C.D.; Wu, L.; Tappero, R.; Nicholas, S.L.; Ehrlich, S.; Zhu, Y.; et al. Quantitative temporally and spatially resolved X-ray fluorescence microprobe characterization of the manganese dissolution-deposition mechanism in aqueous Zn/α-MnO2 batteries. Energy Environ. Sci. 2020, 13, 4322–4333. [Google Scholar] [CrossRef]
- Islam, S.; Alfaruqi, M.H.; Mathew, V.; Song, J.; Kim, S.; Kim, S.; Jo, J.; Baboo, J.P.; Pham, D.T.; Putro, D.Y.; et al. Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. J. Mater. Chem. A 2017, 5, 23299–23309. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, K.; Yuan, Y.; Liao, X.; Song, W.; He, X.; Jin, H.; Wang, S. Electrochemical Study of Polymorphic MnO2 in Rechargeable Aqueous Zinc Batteries. Crystals 2022, 12, 1600. https://doi.org/10.3390/cryst12111600
You K, Yuan Y, Liao X, Song W, He X, Jin H, Wang S. Electrochemical Study of Polymorphic MnO2 in Rechargeable Aqueous Zinc Batteries. Crystals. 2022; 12(11):1600. https://doi.org/10.3390/cryst12111600
Chicago/Turabian StyleYou, Kun, Yifei Yuan, Xiuxian Liao, Wenjun Song, Xuedong He, Huile Jin, and Shun Wang. 2022. "Electrochemical Study of Polymorphic MnO2 in Rechargeable Aqueous Zinc Batteries" Crystals 12, no. 11: 1600. https://doi.org/10.3390/cryst12111600
APA StyleYou, K., Yuan, Y., Liao, X., Song, W., He, X., Jin, H., & Wang, S. (2022). Electrochemical Study of Polymorphic MnO2 in Rechargeable Aqueous Zinc Batteries. Crystals, 12(11), 1600. https://doi.org/10.3390/cryst12111600