New Cyanido-Bridged Complexes of Zn(II) and/or Ag(I) with TPymT and Tptz Ligands: Synthesis, Structural and Fluorescent Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Description of Crystal Structures
3.2. Optical Properties
3.2.1. UV-Vis Spectroscopy
3.2.2. Solid State Fluorescence
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexandru, M.-G.; Visinescu, D.; Braun-Cula, B.; Lloret, F.; Julve, M. Synthesis, Crystal Structure and Magnetic Properties of Three CrIIIMnII Heterodimetallic Complexes Based on Heteroleptic Cyanido-Bearing CrIII Building Blocks. Eur. J. Inorg. Chem. 2018, 2018, 349–359. [Google Scholar] [CrossRef] [Green Version]
- Andruh, M. Heterotrimetallic complexes in molecular magnetism. Chem. Commun. 2018, 54, 3559–3577. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.-H.; Ren, Z.-G.; Lang, J.-P. Rational construction of functional molybdenum (tungsten)–copper–sulfur coordination oligomers and polymers from preformed cluster precursor. Chem. Soc. Rev. 2016, 45, 4995–5019. [Google Scholar] [CrossRef] [PubMed]
- Lang, J.-P.; Jiao, C.-M.; Qiao, S.-B.; Zhang, W.-H.; Abrahams, B.F. Acetic Acid Induced Self-Assembly of Supramolecular Compounds [Et4N]3[(WS4Cu2)2(μ-CN)3]·2MeCN and [PPh4][WS4Cu3(μ-CN)2]·MeCN from Preformed Clusters [A]2[WS4(CuCN)2] (A = Et4N, PPh4). Inorg. Chem. 2005, 44, 3664–3668. [Google Scholar] [CrossRef]
- Marinescu, G.; Madalan, A.M.; Tiseanu, C.; Andruh, M. New d10 heterometallic coordination polymers based on compartmental Schiff-base ligands. Synthesis, structure and luminescence. Polyhedron 2011, 30, 1070–1075. [Google Scholar] [CrossRef]
- Marinescu, G.; Madalan, A.M.; Andruh, M. New heterometallic coordination polymers based on zinc(II) complexes with Schiff-base ligands and dicyanometallates: Synthesis, crystal structures, and luminescent properties. J. Coord. Chem. 2015, 68, 479–490. [Google Scholar] [CrossRef]
- Monim-ul-Mehboob, M.; Ramzan, M.; Rüffer, T.; Lang, H.; Naddem, S.; Akhtar, M.; Ahmad, S. A Zinc(II)-Silver(I) Bimetallic Coordination Polymer Assembled Through Argentophilic and π-π Interactions, {[Zn(phen)2(H2O){Ag(CN)2}][Ag(CN)2]·MeOH}n (phen =1,10-Phenanthroline). Z. Für Nat. B 2013, 68, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, Y.; Wang, C.; Cai, L.; Xie, Y.; Xue, G. Synthesis, crystal structure, and photoluminescent property of a novel heterobimetallic Zn(II)–Ag(I) cyano-bridged coordination polymer incorporating a pentameric unit [Ag(CN)2−]5 assembled by argentophilic interaction. Inorg. Chem. Commun. 2006, 9, 555–558. [Google Scholar] [CrossRef]
- Kosone, T.; Okuda, S.; Kawata, M.; Arai, S.; Kosuge, R.; Kawasaki, T. A New Systematic Construction of Novel Three-Dimensional Spin Crossover Coordination Polymers Based on the [AgI2(CN)3] Building Unit. ACS Omega 2021, 6, 12187–12193. [Google Scholar] [CrossRef]
- Du, J.-L.; Hu, T.-L.; Zhang, S.-M.; Zeng, Y.-F.; Bu, X.-H. Tuning silver(I) coordination architectures by ligands design: From dinuclear, trinuclear, to 1D and 3D frameworks. CrystEngComm 2008, 10, 1866–1874. [Google Scholar] [CrossRef]
- Schmidbaur, H.; Schier, A. Argentophilic Interactions. Angew. Chem. Int. Ed. 2015, 54, 53746–53784. [Google Scholar] [CrossRef] [PubMed]
- Safin, D.A.; Pialat, A.; Leitch, A.A.; Tumanov, N.A.; Korobkov, I.; Filinchuk, Y.; Brusso, J.; Murugesu, M. Anion-induced AgI self-assemblies with electron deficient aromatic ligands: Anion–π-system interactions as a driving force for templated coordination networks. Chem. Commun. 2015, 51, 9547–9550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barakat, A.; El-Faham, A.; Haukka, M.; Al-Majid, A.M.; Soliman, S.M. s-Triazine pincer ligands: Synthesis of their metal complexes, coordination behavior, and applications. Appl. Organomet. Chem. 2021, 35, e6317. [Google Scholar] [CrossRef]
- Yue, Z.; Lu, H.; Li, Z.; Guo, S.; Song, J.; Ren, Y.; Huang, Y.-Y.; Lin, J.; Wang, J.-Q. The structural evolution and tunable photoluminescence of f-element bearing coordination polymers of the 2,4,6-tri-α-pyridyl-1,3,5-triazine ligand. CrystEngComm 2019, 21, 5059–5066. [Google Scholar] [CrossRef]
- Cotton, S.A.; Franckevicius, V.; Mahon, M.F.; Ooi, L.L.; Raithby, P.R.; Teat, S.J. Structures of 2,4,6-tri-α-pyridyl-1,3,5-triazine complexes of the lanthanoid nitrates: A study in the lanthanoid contraction. Polyhedron 2006, 25, 1057–1068. [Google Scholar] [CrossRef]
- Zhao, H.; Lopez, N.; Prosvirin, A.; Chifotides, H.T.; Dunbar, K.R. Lanthanide–3d cyanometalate chains Ln(III)–M(III) (Ln = Pr, Nd, Sm, Eu, Gd, Tb; M = Fe) with the tridentate ligand 2,4,6-tri(2-pyridyl)-1,3,5-triazine (tptz): Evidence of ferromagnetic interactions for the Sm(III)–M(III) compounds (M = Fe, Cr). Dalton Trans. 2007, 8, 878–888. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-H.; Vignesh, K.R.; Zhao, J.; Li, Z.-Y.; Dunbar, K.R. Charge transfer and slow magnetic relaxation in a series of cyano-bridged FeIII4MII2 (M = FeII, CoII, NiII) molecules. Inorg. Chem. Front. 2019, 6, 493–497. [Google Scholar] [CrossRef]
- Yan, C.; Chen, L.; Feng, R.; Jiang, F.; Hong, M. Thermally stable helical chain and octanuclear Ag(I) coordination networks with yellow luminescence. CrystEngComm 2009, 11, 2529–2535. [Google Scholar] [CrossRef]
- Yan, C.; Chen, Q.; Chen, L.; Feng, R.; Shan, X.; Jiang, F.; Hong, M. Crystal Structures and Luminescence Behaviour of d10 Metal–Organic Complexes with Multipyridine Ligands. Aust. J. Chem. 2011, 64, 104–118. [Google Scholar] [CrossRef]
- Lete, C.; Visinescu, D.; Shova, S.; Maxim, C.; Alexandru, M.-G. Redox active extended networks constructed from the three-fold symmetrical TPymT ligand [2,4,6-Tris(2-pyrimidyl)-1,3,5-triazine] and silver(I) ions. J. Solid State Chem. 2022, 313, 123292–123299. [Google Scholar] [CrossRef]
- Safin, D.A.; Xu, Y.; Korobkov, I.; Bryce, D.L.; Murugesu, M. Renaissance of the coordination chemistry of 2,4,6-tris(2-pyrimidyl)-1,3,5-triazine (TPymT). Part I: First crystal structure of a TPymT complex with a d-metal cation. CrystEngComm 2013, 15, 10419–10422. [Google Scholar] [CrossRef]
- Safin, D.A.; Frost, J.M.; Murugesu, M. The renaissance of 2,4,6-tris(2-pyrimidyl)-1,3,5-triazine (TPymT) coordination chemistry. Dalton Trans. 2015, 44, 20287–20294. [Google Scholar] [CrossRef] [PubMed]
- Shiga, T.; Miyamoto, H.; Newton, G.N.; Oshio, H. Two-electron redox-active tricyano iron(II) complex with 2,4,6-tris(2-pyrimidyl)-1,3,5-triazine as a building block for coordination polymers. Dalton Trans. 2018, 47, 13402–13407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lerner, E.I.; Lippard, S.J. 2,4,6-Tris(2-pyrimidyl)- and 2,4,6-Tris(2-pyridyl)- 1,3,5-triazines Hydrolyze in the Presence of Copper(I1) to Form a Novel Bis(ary1)carboximidato Chelate Complex. J. Am. Chem. Soc. 1976, 98, 5397–5398. [Google Scholar] [CrossRef]
- Rabelo, R.; Valdo, A.K.; Robertson, C.; Thomas, J.A.; Stumpf, H.O.; Martins, F.T.; Pedroso, E.F.; Julve, M.; Lloret, F.; Cangussu, D. Synthesis, crystal structure and magnetic properties of [Co(bpcam)2]ClO4·dmso·H2O, [Co(bpcam)2]2[Co(NCS)4]·dmso·H2O and [Ni(bpcam)2]·H2O [Hbpcam = bis(2-pyrimidylcarbonyl)amide]. New J. Chem. 2017, 41, 6911–6921. [Google Scholar] [CrossRef]
- Rigaku Oxford Diffraction System, CrysAlisPro Software, version 1.171.41.64; Rigaku Corporation: Oxford, UK, 2015.
- Sheldrick, G. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Crystal Impact. Diamond—Crystal and Molecular Structure Visualization. H. Putz, Brandenburg, K. Bonn, Germany. Available online: https://www.crystalimpact.com/diamond (accessed on 1 June 2022).
- Llunell, M.; Casanova, D.; Cirera, J.; Bofill, J.M.; Alemany, P.; Alvarez, S.; Pinsky, M.; Avnir, D. SHAPE: Continuous Shape Measures of Polygonal and Polyhedral Molecular Fragments; Version 1.1b; University of Barcelona: Barcelona, Spain, 2005. [Google Scholar]
- Casanova, D.; Llunell, M.; Alemany, P.; Alvarez, S. The Rich Stereochemistry of Eight-Vertex Polyhedra: A Continuous Shape Measures Study. Chem. Eur. J. 2005, 11, 1479–1494. [Google Scholar] [CrossRef]
- Che, C.-M.; Tse, M.-C.; Chan, M.C.W.; Cheung, K.-K.; Phillips, D.L.; Leung, K.-H. Spectroscopic Evidence for Argentophilicity in Structurally Characterized Luminescent Binuclear Silver(I) Complexes. J. Am. Chem. Soc. 2000, 122, 2464–2468. [Google Scholar] [CrossRef]
- Shields, D.J.; Elkoush, T.; Miura-Stempel, E.; Mak, C.L.; Niu, G.-H.; Gudmundsdottir, A.D.; Campbell, M.G. Visible Light Absorption and Long-Lived Excited States in Dinuclear Silver(I) Complexes with Redox-Active Ligands. Inorg. Chem. 2020, 59, 18338–18344. [Google Scholar] [CrossRef]
- Shafikov, M.Z.; Suleymanova, A.F.; Czerwieniec, R.; Yersin, H. Thermally Activated Delayed Fluorescence from Ag(I) Complexes: A Route to 100% Quantum Yield at Unprecedentedly Short Decay Time. Inorg. Chem. 2017, 56, 13274–13285. [Google Scholar] [CrossRef] [PubMed]
- Lia, G.; Yeb, H.; Zhua, F.; Genga, Y.; Fanc, J.; Maa, J.; Adachib, C.; Dong, Y.-B. Luminescent Cu(I) and Ag(I) coordination polymers: Fast phosphorescence or thermally activated delayed fluorescence. Chin. Chem. Lett. 2019, 30, 1931–1934. [Google Scholar] [CrossRef]
- Luo, S.-Q.; Wang, Q.; Quan, J.; Yang, M.; Wang, Y.; Zhang, X.; Chen, Z.-N. A sky-blue luminescent silver (I) complex with a one-dimensional zipper-like structure constructed with 2-diphenylphosphinopyridine and thiocyanate. Transit. Met. Chem. 2021, 46, 415–421. [Google Scholar] [CrossRef]
- Rogovoy, M.I.; Berezin, A.S.; Kozlova, Y.N.; Samsonenko, D.G.; Artem’ev, A.V. A layered Ag(I)-based coordination polymer showing sky-blue luminescence and antibacterial activity. Inorg. Chem. Commun. 2019, 108, 107513. [Google Scholar] [CrossRef]
- Rogovoy, M.I.; Samsonenko, D.G.; Rakhmanova, M.I.; Artem’ev, A.V. Self-assembly of Ag(I)-based complexes and layered coordination polymers bridged by (2-thiazolyl)sulfides. Inorg. Chim. Acta 2019, 489, 19–26. [Google Scholar] [CrossRef]
- Yang, P.; Cui, F.; Yang, X.-J.; Wu, B. Syntheses and Structures of Mononuclear, Dinuclear and Polynuclear Silver(I) Complexes of 2-Pyrazole-Substituted 1,10-Phenanthroline Ligands. Cryst. Growth Des. 2013, 13, 186–194. [Google Scholar] [CrossRef]
1 | 2 | |
---|---|---|
Empirical formula | C22H14Ag2N10OZn | C35.34H18Ag6Cl0.32N24.02 |
Formula weight | 715.54 | 1437.69 |
Temperature/K | 293(2) | 293(2) |
Crystal system | Orthorhombic | Monoclinic |
Space group | Aea2 | P21/c |
a/Å | 26.6027(7) | 30.6404(10) |
b/Å | 20.8758(5) | 7.1204(2) |
c/Å | 8.9695(3) | 19.0863(7) |
α/° | 90 | 90 |
β/° | 90 | 106.513(4) |
γ/° | 90 | 90 |
Volume/Å3 | 4981.3(2) | 3992.3(2) |
Z | 8 | 4 |
ρcalc g/cm3 | 1.908 | 2.392 |
μ/mm−1 | 2.549 | 2.972 |
F(000) | 2784.0 | 2743.0 |
Crystal size/mm3 | 0.35 × 0.1 × 0.05 | 0.12 × 0.05 × 0.02 |
Radiation | Mo Kα (λ = 0.71073) | Mo Kα (λ = 0.71073) |
2θ range for data collection/° | 3.902 to 50.054 | 4.16 to 50.054 |
Index ranges | −22 ≤ h ≤ 31, −23 ≤ k ≤ 24, −10 ≤ l ≤ 9 | −38 ≤ h ≤ 37, −8 ≤ k ≤ 8, −23 ≤ l ≤ 23 |
Reflections collected | 11933 | 8139 |
Independent reflections | 3762 [Rint = 0.0345] | 8139 [Rint = 0.0501] |
Data/restraints/parameters | 3762/1/326 | 8139/0/571 |
Goodness-of-fit on F2 a | 1.071 | 1.056 |
Final R indexes [I ≥ 2σ(I)] b | R1 = 0.0394, wR2 = 0.0889 | R1 = 0.0581, wR2 = 0.0874 |
Final R indexes [all data] c | R1 = 0.0457, wR2 = 0.0933 | R1 = 0.0964, wR2 = 0.1017 |
Largest diff. peak/hole/e Å−3 | 0.49/−0.51 | 1.50/−1.38 |
Flack parameter | 0.01(3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visinescu, D.; Shova, S.; Popescu, D.-L.; Alexandru, M.-G. New Cyanido-Bridged Complexes of Zn(II) and/or Ag(I) with TPymT and Tptz Ligands: Synthesis, Structural and Fluorescent Properties. Crystals 2022, 12, 1618. https://doi.org/10.3390/cryst12111618
Visinescu D, Shova S, Popescu D-L, Alexandru M-G. New Cyanido-Bridged Complexes of Zn(II) and/or Ag(I) with TPymT and Tptz Ligands: Synthesis, Structural and Fluorescent Properties. Crystals. 2022; 12(11):1618. https://doi.org/10.3390/cryst12111618
Chicago/Turabian StyleVisinescu, Diana, Sergiu Shova, Delia-Laura Popescu, and Maria-Gabriela Alexandru. 2022. "New Cyanido-Bridged Complexes of Zn(II) and/or Ag(I) with TPymT and Tptz Ligands: Synthesis, Structural and Fluorescent Properties" Crystals 12, no. 11: 1618. https://doi.org/10.3390/cryst12111618
APA StyleVisinescu, D., Shova, S., Popescu, D. -L., & Alexandru, M. -G. (2022). New Cyanido-Bridged Complexes of Zn(II) and/or Ag(I) with TPymT and Tptz Ligands: Synthesis, Structural and Fluorescent Properties. Crystals, 12(11), 1618. https://doi.org/10.3390/cryst12111618