Radiation Response Properties of Tb-Doped MgGa2O4 Single Crystals
Abstract
1. Introduction
2. Experimental Methods
3. Results and Discussion
4. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yanagida, T.; Okada, G.; Kawaguchi, N. Ionizing-Radiation-Induced Storage-Luminescence for Dosimetric Applications. J. Lumin. 2019, 207, 14–21. [Google Scholar] [CrossRef]
- Bhatt, B.C.; Kulkarni, M.S. Worldwide Status of Personnel Monitoring Using Thermoluminescent ( TL ), Optically Stimulated Luminescent (OSL) and Radiophotoluminescent ( RPL ) Dosimeters. Int. J. Lumin. Appl. 2013, 3, 6–10. [Google Scholar]
- Viamonte, A.; da Rosa, L.A.R.; Buckley, L.A.; Cherpak, A.; Cygler, J.E. Radiotherapy Dosimetry Using a Commercial OSL System. Med. Phys. 2008, 35, 1261–1266. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Yamazaki, A.; Nakahashi, K.; Miyamae, H.; Uritani, A.; Ariga, E. Development of a Micro-Size Dosimeter Using an Optical Fiber Probe Based on Photostimulable Phosphorescence. Radiat. Meas. 2013, 55, 64–67. [Google Scholar] [CrossRef]
- Nanto, H.; Nishimura, A.; Kuroda, M.; Takei, Y.; Nakano, Y.; Shoji, T.; Yanagita, T.; Kasai, S. X-ray Imaging Plate Using CsBr:Eu Phosphors for Computed Radiography. Nucl. Instrum. Methods Phys. Res. Sect. A 2007, 580, 278–281. [Google Scholar] [CrossRef]
- McKeever, S.W.S. Optically Stimulated Luminescence: A Brief Overview. Radiat. Meas. 2011, 46, 1336–1341. [Google Scholar] [CrossRef]
- Akça, S.; Portakal, Z.G.; Dogan, T.; Kucuk, N.; Canimoglu, A.; Topaksu, M.; Can, N. Thermoluminescence Properties of Tb Doped Mg2SiO4 after Beta Irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B 2019, 458, 12–20. [Google Scholar] [CrossRef]
- Bos, A.J.J.; Dielhof, J.B. The Analysis of Thermoluminescent Glow Peaks in CaF2:Tm (TLD-300). Radiat. Prot. Dosim. 1991, 37, 231–239. [Google Scholar] [CrossRef][Green Version]
- Fiksel, G.; Marshall, F.J.; Mileham, C.; Stoeckl, C. Note: Spatial Resolution of Fuji BAS-TR and BAS-SR Imaging Plates. Rev. Sci. Instrum. 2012, 83, 086103. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, Y.; Jiang, Y.; Zhou, W.; Finch, A.A.; Townsend, P.D.; Wang, Y. Ion Size Effects on Thermoluminescence of Terbium and Europium Doped Magnesium Orthosilicate. J. Mater. Res. 2015, 30, 3443–3452. [Google Scholar] [CrossRef]
- Yanagisawa, S.; Shinsho, K.; Inoue, M.; Koba, Y.; Matsumoto, K.; Ushiba, H.; Andoh, T. Applicability of Two-Dimensional Thermoluminescence Slab Dosimeter Based on Al2O3:Cr for the Quality Assurance of Robotic Radiosurgery. Radiat. Meas. 2017, 106, 326–330. [Google Scholar] [CrossRef]
- Takebuchi, Y.; Kato, T.; Nakauchi, D.; Kawaguchi, N.; Yanagida, T. Dosimetric Properties of Dy-Doped LiCaPO4. Optik 2022, 260, 169079. [Google Scholar] [CrossRef]
- Kato, T.; Nakauchi, D.; Kawaguchi, N.; Yanagida, T. TSL and OSL Properties of Cu-Doped CaF2 Ceramics Prepared by Spark Plasma Sintering. Sens. Mater. 2022, 34, 653. [Google Scholar] [CrossRef]
- Oh, R.; Yanagisawa, S.; Tanaka, H.; Takata, T.; Wakabayashi, G.; Tanaka, M.; Sugioka, N.; Koba, Y.; Shinsho, K. Thermal Neutron Measurements Using Thermoluminescence Phosphor Cr-Doped Al2O3 and Cd Neutron Converter. Sens. Mater. 2021, 33, 2129. [Google Scholar] [CrossRef]
- Schmocker, U.; Boesch, H.R.; Waldner, F. A Direct Determination of Cation Disorder in MgAl2O4 Spinel by ESR. Phys. Lett. A 1972, 40, 237–238. [Google Scholar] [CrossRef]
- Gritsyna, V.T.; Kazarinov, Y.G.; Kobyakov, V.A.; Sickafus, K.E. Defects and Radiation Induced Electronic Processes in Magnesium Aluminate Spinel of Different Compositions. Radiat. Eff. Defects Solids 2002, 157, 659–663. [Google Scholar] [CrossRef]
- Pathak, N.; Ghosh, P.S.; Gupta, S.K.; Mukherjee, S.; Kadam, R.M.; Arya, A. An Insight into the Various Defects-Induced Emission in MgAl2O4 and Their Tunability with Phase Behavior: Combined Experimental and Theoretical Approach. J. Phys. Chem. C 2016, 120, 4016–4031. [Google Scholar] [CrossRef]
- Khan, K.; Satapathy, K.K.; Mishra, G.C. Thermoluminescence Characterization of MAl2O4 ( M=Ba, Ca, Mg) Phosphors Activated with Dy3+. Int. J. Lumin. Appl. 2015, 5, 26–28. [Google Scholar]
- Takebuchi, Y.; Fukushima, H.; Kato, T.; Nakauchi, D.; Kawaguchi, N.; Yanagida, T. Dosimetric Properties of Tb-Doped MgAl2O4 Single Crystals. Jpn. J. Appl. Phys. 2020, 59, 052007. [Google Scholar] [CrossRef]
- Takebuchi, Y.; Fukushima, H.; Kato, T.; Nakauchi, D.; Kawaguchi, N.; Yanagida, T. Thermally Stimulated Luminescence Properties of Dy-Doped MgAl2O4 Single Crystals. Optik 2021, 231, 166498. [Google Scholar] [CrossRef]
- Takebuchi, Y.; Koshimizu, M.; Kato, T.; Nakauchi, D.; Kawaguchi, N.; Yanagida, T. Effect of Tm Doping on Photoluminescence, Scintillation, and Thermally Stimulated Luminescence Properties of MgAl2O4 Single Crystals. J. Lumin. 2022, 251, 119247. [Google Scholar] [CrossRef]
- Takebuchi, Y.; Fukushima, H.; Nakauchi, D.; Kato, T.; Kawaguchi, N.; Yanagida, T. Scintillation and Dosimetric Properties of Ce-Doped MgAl2O4 Single Crystals. J. Lumin. 2020, 223, 117139. [Google Scholar] [CrossRef]
- Bos, A.J.J. Theory of Thermoluminescence. Radiat. Meas. 2006, 41, S45–S56. [Google Scholar] [CrossRef]
- Galazka, Z.; Klimm, D.; Irmscher, K.; Uecker, R.; Pietsch, M.; Bertram, R.; Naumann, M.; Albrecht, M.; Kwasniewski, A.; Schewski, R.; et al. MgGa2O4 as a New Wide Bandgap Transparent Semiconducting Oxide: Growth and Properties of Bulk Single Crystals. Phys. Status Solidi 2015, 212, 1455–1460. [Google Scholar] [CrossRef]
- Hosseini, S.M. Structural, Electronic and Optical Properties of Spinel MgAl2O4 Oxide. Phys. Status Solidi 2008, 245, 2800–2807. [Google Scholar] [CrossRef]
- Luchechko, A.; Zhydachevskyy, Y.; Maraba, D.; Bulur, E.; Ubizskii, S.; Kravets, O. TL and OSL Properties of Mn2+-Doped MgGa2O4 Phosphor. Opt. Mater. 2018, 78, 502–507. [Google Scholar] [CrossRef]
- Mlotswa, D.V.; Noto, L.L.; Mofokeng, S.J.; Obodo, K.O.; Orante-Barrón, V.R.; Mothudi, B.M. Luminescence Dynamics of MgGa2O4 Prepared by Solution Combustion Synthesis. Opt. Mater. 2020, 109, 110134. [Google Scholar] [CrossRef]
- Takebuchi, Y.; Fukushima, H.; Kato, T.; Nakauchi, D.; Kawaguchi, N.; Yanagida, T. Optical, Scintillation, and Dosimetric Properties of Mn-Doped MgAl2O4 Single Crystals. J. Mater. Sci. Mater. Electron. 2020, 31, 8240–8247. [Google Scholar] [CrossRef]
- Yanagida, T.; Fujimoto, Y.; Kawaguchi, N.; Yanagida, S. Dosimeter Properties of AlN. J. Ceram. Soc. Jpn. 2013, 121, 988–991. [Google Scholar] [CrossRef]
- Okada, G.; Kato, T.; Nakauchi, D.; Fukuda, K.; Yanagida, T. Photochromism and Thermally and Optically Stimulated Luminescences of AlN Ceramic Plate for UV Sensing. Sens. Mater. 2016, 28, 897. [Google Scholar] [CrossRef][Green Version]
- Okada, G.; Fukuda, K.; Kasap, S.; Yanagida, T. Aluminum Nitride Ceramic as an Optically Stimulable Luminescence Dosimeter Plate. Photonics 2016, 3, 23. [Google Scholar] [CrossRef]
- Liu, H.; Yu, L.; Li, F. Photoluminescent Properties of Eu3+ and Dy3+ Ions Doped MgGa2O4 Phosphors. J. Phys. Chem. Solids 2013, 74, 196–199. [Google Scholar] [CrossRef]
- Zhang, G.; Goldstein, A.; Wu, Y. Novel Transparent MgGa2O4 and Ni2+-Doped MgGa2O4 Ceramics. J. Adv. Ceram. 2022, 11, 470–481. [Google Scholar] [CrossRef]
- Basavaraju, N.; Sharma, S.; Bessière, A.; Viana, B.; Gourier, D.; Priolkar, K.R. Red Persistent Luminescence in MgGa2O4: Cr3+; a New Phosphor for in Vivo Imaging. J. Phys. D. Appl. Phys. 2013, 46, 375401. [Google Scholar] [CrossRef]
- Ichiba, K.; Takebuchi, Y.; Kimura, H.; Kato, T.; Nakauchi, D.; Kawaguchi, N.; Yanagida, T. Photoluminescence, Scintillation, and Dosimetric Properties of Tb-Doped Mg2SiO4 Single Crystals. J. Mater. Sci. Mater. Electron. 2022, 33, 13634–13641. [Google Scholar] [CrossRef]
- Yang, H.; Shi, J.; Gong, M.; Cheah, K.W. Synthesis and Photoluminescence of Eu3+- or Tb3+-Doped Mg2SiO4 Nanoparticles Prepared by a Combined Novel Approach. J. Lumin. 2006, 118, 257–264. [Google Scholar] [CrossRef]
- Ichiba, K.; Takebuchi, Y.; Kimura, H.; Kato, T.; Shiratori, D.; Nakauchi, D.; Kawaguchi, N.; Yanagida, T. Synthesis of Tb-Doped SiO2 Glasses by Spark Plasma Sintering Method and Evaluation of Photoluminsecence and Thermally Stimulated Luminescence Properties. Radiat. Phys. Chem. 2023, 202, 110515. [Google Scholar] [CrossRef]
- Nakauchi, D.; Kato, T.; Kawaguchi, N.; Yanagida, T. Photoluminescence and Scintillation Properties of Tb:GdTaO4 Crystals. Sens. Mater. 2021, 33, 2203. [Google Scholar] [CrossRef]
- Nakagawa, H.; Ebisu, K.; Zhang, M.; Kitaura, M. Luminescence Properties and Afterglow in Spinel Crystals Doped with Trivalent Tb Ions. J. Lumin. 2003, 102–103, 590–596. [Google Scholar] [CrossRef]
- Ratnam, B.V.; Jayasimhadri, M.; Bhaskar Kumar, G.; Jang, K.; Kim, S.S.; Lee, Y.I.; Lim, J.M.; Shin, D.S.; Song, T.K. Synthesis and Luminescent Features of NaCaPO4:Tb3+ Green Phosphor for near UV-Based LEDs. J. Alloy. Compd. 2013, 564, 100–104. [Google Scholar] [CrossRef]
- Nakauchi, D.; Fukushima, H.; Kato, T.; Kawaguchi, N.; Yanagida, T. Photoluminescence and Scintillation Properties of Ce-, Pr-, and Tb-Doped (Gd,Lu)2Hf2O7 Crystals. Sens. Mater. 2022, 34, 611. [Google Scholar] [CrossRef]
- Jiang, B.; Chi, F.; Wei, X.; Chen, Y.; Yin, M. A Self-Activated MgGa2O4 for Persistent Luminescence Phosphor. J. Appl. Phys. 2018, 124, 063101. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, P.; Jing, X.; Wang, L. Luminescence of Native Defects in MgGa2O4. J. Electrochem. Soc. 2009, 156, H43. [Google Scholar] [CrossRef]
- Liu, F.S.; Liu, Q.L.; Liang, J.K.; Luo, J.; Yang, L.T.; Song, G.B.; Zhang, Y.; Wang, L.X.; Yao, J.N.; Rao, G.H. Crystal Structure and Photoluminescence of Tb3+ Doped Y3GaO6. J. Alloy. Compd. 2006, 425, 278–283. [Google Scholar] [CrossRef]
- Dahiya, H.; Dalal, M.; Dalal, J.; Taxak, V.B.; Khatkar, S.P.; Kumar, D. Synthesis and Luminescent Properties of Tb3+ Doped BaLa2ZnO5 Nanoparticles. Mater. Res. Bull. 2018, 99, 86–92. [Google Scholar] [CrossRef]
- Liao, J.; Qiu, B.; Lai, H. Synthesis and Luminescence Properties of Tb3+:NaGd(WO4)2 Novel Green Phosphors. J. Lumin. 2009, 129, 668–671. [Google Scholar] [CrossRef]
- Matsui, H.; Xu, C.-N.; Akiyama, M.; Watanabe, T. Strong Mechanoluminescence from UV-Irradiated Spinels of ZnGa2O4:Mn and MgGa2O4:Mn. Jpn. J. Appl. Phys. 2000, 39, 6582–6586. [Google Scholar] [CrossRef]
- Boruc, Z.; Fetlinski, B.; Kaczkan, M.; Turczynski, S.; Pawlak, D.; Malinowski, M. Temperature and Concentration Quenching of Tb3+ Emissions in Y4Al2O9 Crystals. J. Alloy. Compd. 2012, 532, 92–97. [Google Scholar] [CrossRef]
- Bhatt, B.C. Thermoluminescence, Optically Stimulated Luminescence and Radiophotoluminescence Dosimetry: An Overall Perspective. Radiat. Prot. Environ. 2011, 34, 6–16. [Google Scholar]
Sample | QY at 250 nm (%) | τ (μs) |
---|---|---|
0.3% Tb | 5.0 | 856 |
1% Tb | 6.5 | 627 |
3% Tb | 10.7 | 703 |
5% Tb | 4.4 | 877 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takebuchi, Y.; Honjo, S.; Naoe, K.; Kato, T.; Nakauchi, D.; Kawaguchi, N.; Yanagida, T. Radiation Response Properties of Tb-Doped MgGa2O4 Single Crystals. Crystals 2022, 12, 1620. https://doi.org/10.3390/cryst12111620
Takebuchi Y, Honjo S, Naoe K, Kato T, Nakauchi D, Kawaguchi N, Yanagida T. Radiation Response Properties of Tb-Doped MgGa2O4 Single Crystals. Crystals. 2022; 12(11):1620. https://doi.org/10.3390/cryst12111620
Chicago/Turabian StyleTakebuchi, Yuma, Satoshi Honjo, Kazumitsu Naoe, Takumi Kato, Daisuke Nakauchi, Noriaki Kawaguchi, and Takayuki Yanagida. 2022. "Radiation Response Properties of Tb-Doped MgGa2O4 Single Crystals" Crystals 12, no. 11: 1620. https://doi.org/10.3390/cryst12111620
APA StyleTakebuchi, Y., Honjo, S., Naoe, K., Kato, T., Nakauchi, D., Kawaguchi, N., & Yanagida, T. (2022). Radiation Response Properties of Tb-Doped MgGa2O4 Single Crystals. Crystals, 12(11), 1620. https://doi.org/10.3390/cryst12111620