Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,616)

Search Parameters:
Keywords = single crystal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 17975 KB  
Article
Moderate Rare Metal Enrichment by Auto-Assimilation in the Neoproterozoic Gabal Um Samra Granites, Eastern Desert, Egypt
by Heba S. Mubarak, Mokhles K. Azer, Adel A. Surour, Hilmy E. Moussa, Paul D. Asimow and Mona Kabesh
Minerals 2025, 15(9), 898; https://doi.org/10.3390/min15090898 - 24 Aug 2025
Abstract
The Gabal Um Samra (GUS) compound intrusion in the Eastern Desert of Egypt consists of a co-magmatic series of syenogranite and alkali feldspar granite. Accessory minerals (e.g., zircon, monazite, allanite) are abundant. Geochemically, the GUS intrusion is a classic A-type granite. It is [...] Read more.
The Gabal Um Samra (GUS) compound intrusion in the Eastern Desert of Egypt consists of a co-magmatic series of syenogranite and alkali feldspar granite. Accessory minerals (e.g., zircon, monazite, allanite) are abundant. Geochemically, the GUS intrusion is a classic A-type granite. It is extensively fractionated, enriched in large ion lithophile elements and high field strength elements, and depleted in Ba, Sr, K, and Ti. Normalized rare earth element patterns are nearly flat, without any lanthanide tetrad anomalies, but with distinct negative Eu anomalies (Eu/Eu* = 0.14–0.22) due to feldspar fractionation. Paired Zr-Hf and Y-Ho element systematics indicate igneous rather than hydrothermal processes. The petrogenesis of the comparatively unaltered GUS intrusion offers an opportunity to refine the standard model for post-collisional felsic magmatism in the Neoproterozoic Arabian–Nubian Shield. It is explained by the partial melting of juvenile crust induced by lithospheric delamination, followed by extensive fractional crystallization. A quantitative mass-balance model shows that the granite varieties of the GUS intrusion plausibly represent liquids along a single liquid line of descent; but, if so, the more evolved, later pulses display anomalous enrichment in Rb, Nb, Ta, U, and REE. The most plausible source for this enrichment is the extraction of small-degree residual melts from earlier pulses and the mixing of the melts into the later pulses, an energetically favorable process we call “auto-assimilation”. A quantitative model shows that the residual liquid after 97.5% crystallization of the syenogranite can fit the major oxide and trace element data in the alkali feldspar granite if 0.07% by mass of this melt is added to the evolving system for each 1% crystal fractionation by mass. The GUS intrusion represents an example of moderate rare metal enrichment and concentration to sub-economic grade by auto-assimilation. Similar processes may affect intrusions that feature higher grade mineralization, but the evidence is often obscured by the extensive alteration of those deposits. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

12 pages, 1579 KB  
Article
Mechanochemical Synthesis, Spectroscopic Characterization and Molecular Structure of Piperidine–Phenytoin Salt
by María Isabel Amil-Miranda, Armando Pineda-Contreras, Francisco Javier Martínez-Martínez, Marcos Flores-Álamo, Hector García-Ortega and Juan Saulo González-González
Organics 2025, 6(3), 38; https://doi.org/10.3390/org6030038 - 22 Aug 2025
Viewed by 86
Abstract
Phenytoin is an anticonvulsant drug that suffers from low aqueous solubility. The formation of phenytoin salts is a strategy employed to address this issue. A phenytoin–piperidine salt (PPD–PNT) was synthesized by solvent-assisted grinding and characterized by infrared (IR) spectroscopy, 1H and 13 [...] Read more.
Phenytoin is an anticonvulsant drug that suffers from low aqueous solubility. The formation of phenytoin salts is a strategy employed to address this issue. A phenytoin–piperidine salt (PPD–PNT) was synthesized by solvent-assisted grinding and characterized by infrared (IR) spectroscopy, 1H and 13C Nuclear Magnetic Resonance (NMR), and powder and single crystal X-ray diffraction. The IR and NMR spectra obtained differed from those of the starting compounds, showing shifts in the N-H and C=O group signals, as well as the appearance of NH+ signals, indicating proton transfer and salt formation. Powder X-ray diffraction confirmed the formation of a new solid phase corresponding to the salt. Single crystal X-ray diffraction showed the molecular structure of the PPD–PNT salt. Full article
(This article belongs to the Special Issue Chemistry of Heterocyclic Compounds)
Show Figures

Graphical abstract

26 pages, 1288 KB  
Review
Lithium Niobate Crystal Preparation, Properties, and Its Application in Electro-Optical Devices
by Yan Zhang, Xuefeng Xiao, Jiayi Chen, Han Zhang, Yan Huang, Jiashun Si, Shuaijie Liang, Qingyan Xu, Huan Zhang, Lingling Ma, Cui Yang and Xuefeng Zhang
Inorganics 2025, 13(9), 278; https://doi.org/10.3390/inorganics13090278 - 22 Aug 2025
Viewed by 74
Abstract
Lithium Niobate (LiNbO3, LN) crystals are multifunctional optical materials with excellent electro-optical, acousto-optical, and nonlinear optical properties, and their broad spectral transparency makes them widely used in electro-optical modulators, tunable filters, and beam deflectors. Near Stoichiometric Lithium Niobate (NSLN) crystals have [...] Read more.
Lithium Niobate (LiNbO3, LN) crystals are multifunctional optical materials with excellent electro-optical, acousto-optical, and nonlinear optical properties, and their broad spectral transparency makes them widely used in electro-optical modulators, tunable filters, and beam deflectors. Near Stoichiometric Lithium Niobate (NSLN) crystals have a lithium to niobium ratio ([Li]/[Nb]) close to 1:1,demonstrate superior performance characteristics compared to composition lithium niobate (Congruent Lithium Niobate (CLN), [Li]/[Nb] = 48.5:51.5) crystals. NSLN crystals have a lower coercive field (~4 kV/mm), higher electro-optic coefficient ( 𝛾33= 38.3 pm/V), and better nonlinear optical properties. This paper systematically reviews the research progress on preparation methods, the physical properties of LN and NSLN crystals, and their applications in devices such as electro-optical modulators, optical micro-ring resonators, and holographic storage. Finally, the future development direction of NSLN crystals in the preparation process (large-size single-crystal growth and defect control) and new electro-optical devices (low voltage deflectors based on domain engineering) is envisioned. Full article
16 pages, 4846 KB  
Article
A Neodymium(III)-Based Hydrogen-Bonded Bilayer Framework with Dual Functions: Selective Ion Sensing and High Proton Conduction
by Jie Liu, Xin-Yu Guo, Wen-Duo Zhu, Nan Zheng and Jiu-Fu Lu
Molecules 2025, 30(17), 3455; https://doi.org/10.3390/molecules30173455 - 22 Aug 2025
Viewed by 163
Abstract
Lanthanide hydrogen-bonded organic frameworks (Ln-HOFs) integrating luminescent and proton-conductive properties hold significant promise for multifunctional sensing and energy applications, yet their development remains challenging due to the difficulty of balancing structural stability and functional diversity. In this context, this study successfully synthesized a [...] Read more.
Lanthanide hydrogen-bonded organic frameworks (Ln-HOFs) integrating luminescent and proton-conductive properties hold significant promise for multifunctional sensing and energy applications, yet their development remains challenging due to the difficulty of balancing structural stability and functional diversity. In this context, this study successfully synthesized a novel neodymium(III)-based hydrogen-bonded framework material, formulated as {Nd(H2O)3(4-CPCA)[H(4-CPCA)]∙H2O}ₙ (SNUT-15), via hydrothermal assembly using 1-(4-carboxyphenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylic acid (H2(4-CPCA)) as the ligand. Single-crystal X-ray diffraction analysis revealed a rare two-dimensional hydrogen-bonded bilayer structure stabilized by π-π stacking interactions and intermolecular hydrogen bonds. Hirshfeld surface analysis further corroborated the structural characteristics of this material. Moreover, leveraging the superior luminescent properties of lanthanide elements, this crystalline material exhibits dual functionality: selective fluorescence quenching toward Fe3+, La3+, and Mn2+ (with detection limits of 1.74 × 10−4, 1.88 × 10−4, and 3.57 × 10−4 mol·L−1, respectively), as well as excellent proton conductivity reaching 7.92 × 10−3 S cm−1 under conditions of 98% relative humidity and 353 K (80 °C). As a multifunctional neodymium(III)-based HOF material, SNUT-15 demonstrates its potential for applications in environmental monitoring and solid-state electrolytes, providing valuable insights into the rational design of lanthanide-containing frameworks. Full article
(This article belongs to the Section Molecular Structure)
Show Figures

Graphical abstract

20 pages, 2094 KB  
Article
Synthetic Approaches to Steroidal Thiosemicarbazones, 1,3,4-Thia(selena)diazolines, and Oxalate-Linked Dimers
by Luis A. Méndez-Delgado, Mónica Martínez-Montiel, Alma Fuentes-Aguilar, Socorro Meza-Reyes, Sara Montiel-Smith, José Luis Vega-Baez, José M. Padrón and Penélope Merino-Montiel
Organics 2025, 6(3), 37; https://doi.org/10.3390/org6030037 - 22 Aug 2025
Viewed by 108
Abstract
A total of 24 novel steroidal derivatives were synthesized, including 1,3,4-thia(selena)diazolines and structurally unique spirothiadiazolines, obtained through intramolecular cyclization under standard acetylation conditions. This strategy was further extended to the construction of a novel dimeric compound bearing a thiadiazoline linker. Seleno- and thiosemicarbazone [...] Read more.
A total of 24 novel steroidal derivatives were synthesized, including 1,3,4-thia(selena)diazolines and structurally unique spirothiadiazolines, obtained through intramolecular cyclization under standard acetylation conditions. This strategy was further extended to the construction of a novel dimeric compound bearing a thiadiazoline linker. Seleno- and thiosemicarbazone precursors were derived from various functionalized steroidal monomers and dimers via straightforward synthetic protocols. Key intermediates included aldehyde 7 and ketones 16, 19, and 24. Rotameric equilibria were observed in certain thiosemicarbazones, attributed to partial double-bond character in the N–CS bond. Cyclization yielded heterocyclic systems as epimeric mixtures, and in some cases, inseparable mixtures of isomers were obtained due to low diastereoselectivity. Full structural elucidation of epimeric pairs was achieved using 2D NMR and IR spectroscopy, with compounds 2, 3, 5, 11, 17, 27, 28a, and 28b further confirmed by single-crystal X-ray diffraction. Preliminary antiproliferative assays against human cancer cell lines revealed GI50 values below 10 µM for compounds 21, 22, and 27. Full article
Show Figures

Graphical abstract

15 pages, 3954 KB  
Article
Molecular Dynamics Simulation on Orientation-Dependent Mechanical Behaviors of ZnO Single Crystals Under Nanoindentation
by Xiaolin Zhu, Jijun Li, Shiting Yang, Weiguang Zhang, Xiuxia Li, Hui Tang, Fengchao Lang, Lin Lin, Xiaohu Hou, Xueping Zhao and Jiayi Chen
Materials 2025, 18(16), 3905; https://doi.org/10.3390/ma18163905 - 21 Aug 2025
Viewed by 175
Abstract
The present study aims to investigate the orientation-dependent mechanical behaviors of ZnO single crystals under nanoindentation by molecular dynamics simulation. The load–indentation depth curves, atomic displacement, shear strain and dislocations for the c-plane, m-plane and a-plane ZnO single crystals were analyzed in detail. [...] Read more.
The present study aims to investigate the orientation-dependent mechanical behaviors of ZnO single crystals under nanoindentation by molecular dynamics simulation. The load–indentation depth curves, atomic displacement, shear strain and dislocations for the c-plane, m-plane and a-plane ZnO single crystals were analyzed in detail. The simulation results showed that the elastic deformation stage of the loading curves for the three oriented ZnO single crystals can be described well by the Herz elastic contact model. The Young modulus values for the c-plane, m-plane and a-plane ZnO were calculated to be 122.5 GPa, 158.3 GPa and 170.5 GPa, respectively. The onset of plastic deformation occurred first in a-plane ZnO, then in m-plane ZnO, and lastly in c-planeZnO. The atomic displacement vectors in the three oriented ZnO single crystals were in good agreement with the primary activated slip systems predicted by the maximum Schmid factor. For the c-plane ZnO, the activated pyramidal {112¯2}<112¯3> slip system led to a complex dislocation pattern surrounding the indenter. A U-shaped prismatic half-loop was formed in the [211¯0] direction, confirming the activation of the prismatic {101¯0}<112¯0> slip system. For the m-plane ZnO, the activated prismatic {101¯0}<112¯0> slip system led to the preferential nucleation of dislocations along the 11¯20 and [2¯110] directions. A prismatic loop was formed and emitted along the [2¯110] direction, governed by a confined glide on {101¯0} planes. For the a-plane ZnO, the activated prismatic {101¯0}<112¯0> slip system led to dislocations concentrated in the [1¯1¯20] direction beneath the indentation pit, emitting a prismatic loop along this direction. Perfect dislocation (with a Burgers vector of 1/3 <12¯10>) is the dominant dislocation in the three oriented ZnO single crystals. The findings are expected to deepen insights into the anisotropic mechanical properties of ZnO single crystals, offering guidance for the development and applications of ZnO-based devices. Full article
Show Figures

Figure 1

24 pages, 1620 KB  
Article
Novel Indole-Based Sulfonylhydrazones as Potential Anti-Breast Cancer Agents: Synthesis, In Vitro Evaluation, ADME, and QSAR Studies
by Violina T. Angelova, Rositsa Mihaylova, Zvetanka Zhivkova, Nikolay Vassilev, Boris Shivachev and Irini Doytchinova
Pharmaceuticals 2025, 18(8), 1231; https://doi.org/10.3390/ph18081231 - 20 Aug 2025
Viewed by 218
Abstract
Background: Breast cancer continues to pose a significant global health challenge despite advances in early detection and targeted therapies. The development of novel chemotherapeutic agents remains crucial, particularly those with selective cytotoxicity toward specific breast cancer subtypes. Methods: A series of [...] Read more.
Background: Breast cancer continues to pose a significant global health challenge despite advances in early detection and targeted therapies. The development of novel chemotherapeutic agents remains crucial, particularly those with selective cytotoxicity toward specific breast cancer subtypes. Methods: A series of ten hybrid indolyl-methylidene phenylsulfonylhydrazones and one bis-indole derivative were designed, synthesized, and structurally characterized using NMR and high-resolution mass spectrometry (HRMS). Prior to synthesis, in silico screening was performed to assess drug likeness and ADME-related properties. Single-crystal X-ray diffraction was conducted for compound 3e. The cytotoxic potential of the synthesized compounds was evaluated using the MTT assay against MCF-7 (ER-α⁺) and MDA-MB-231 (triple-negative) breast cancer cell lines. Additionally, quantitative structure–activity relationship (QSAR) analysis was conducted to identify key structural features contributing to activity. Results: Most compounds exhibited selective cytotoxicity against MCF-7 cells. Notably, compound 3b demonstrated the highest potency with an IC50 of 4.0 μM and a selectivity index (SI) of 20.975. Compound 3f showed strong activity against MDA-MB-231 cells (IC50 = 4.7 μM). QSAR analysis revealed that the presence of a non-substituted phenyl ring and specific indolyl substituents (5-methoxy, 1-acetyl, 5-chloro) significantly contributed to enhanced cytotoxic activity and ligand efficiency. Conclusion: The synthesized phenylsulfonylhydrazone hybrids exhibit promising and selective cytotoxicity, particularly against ER-α⁺ breast cancer cells. Structural insights from QSAR analysis provide a valuable foundation for the further optimization of this scaffold as a potential source of selective anticancer agents. Full article
(This article belongs to the Special Issue Advances in Hydrazone Compounds with Anticancer Activity)
Show Figures

Graphical abstract

11 pages, 2254 KB  
Article
Behaviors of Gas-Rich Crystalline Fluid Inclusions
by Luis Salgado, François Faure and Gérard Coquerel
Crystals 2025, 15(8), 740; https://doi.org/10.3390/cryst15080740 - 20 Aug 2025
Viewed by 135
Abstract
A novel behavior of fluid inclusions (FIs) in crystals is reported in this study. Typically, at “high” temperature, FIs in molecular crystals become faceted, adopting the morphology of a single crystal. Usually, upon cooling, these faceted FIs develop into rounded cavities containing the [...] Read more.
A novel behavior of fluid inclusions (FIs) in crystals is reported in this study. Typically, at “high” temperature, FIs in molecular crystals become faceted, adopting the morphology of a single crystal. Usually, upon cooling, these faceted FIs develop into rounded cavities containing the mother solution with a retreat gas bubble. After annealing at low temperature, the FIs reshape back into a negative-crystal morphology, but the gas bubble remains. This latter process can take from minutes to very long times depending on the storage temperature and solubility. Investigations into the behavior of FIs of dicumyl peroxide (DCP) under fast cooling rates have revealed a morphological transition from negative crystals to FIs with a holly-leaf shape. The spikes of the holly-leaf-shaped FIs point toward the corners of the former negative crystal, and the sizes of the gas bubbles exceed those of conventional retreat bubbles. Therefore, it is likely that this phenomenon is linked to rapid cooling and an excess of CO2 dissolved in the mother solution from which the DCP single crystals were grown. The concentration of the solution inside the FIs rapidly increases after the nucleation of this large gas bubble. This is consistent with a sharp acceleration of inward crystal growth immediately after its appearance. Interestingly, FIs in pyroclastic olivine crystals grown from CO2-rich lava can also present a holly-leaf shape. Thus, this non-equilibrium morphological transition may be relatively common. Full article
(This article belongs to the Section Industrial Crystallization)
Show Figures

Figure 1

13 pages, 2635 KB  
Article
Structure and Nonlinear Optical Characterization of a New Acentric Crystal of a 4-Hydroxybenzohydrazide Derivative
by Emanuela Santagata, Yovan de Coene, Stijn Van Cleuvenbergen, Koen Clays, Emmanuele Parisi, Fabio Borbone and Roberto Centore
Crystals 2025, 15(8), 739; https://doi.org/10.3390/cryst15080739 - 20 Aug 2025
Viewed by 177
Abstract
We report the crystal structure and nonlinear optical (NLO) characterization of the monohydrate form of N′-[(E)-(2-fluorophenyl)methylidene]-4-hydroxybenzohydrazide (o-FHH), an organic compound showing strong potential for second-order nonlinear optical applications. The compound crystallizes in a non-centrosymmetric tetragonal space group. The supramolecular features of [...] Read more.
We report the crystal structure and nonlinear optical (NLO) characterization of the monohydrate form of N′-[(E)-(2-fluorophenyl)methylidene]-4-hydroxybenzohydrazide (o-FHH), an organic compound showing strong potential for second-order nonlinear optical applications. The compound crystallizes in a non-centrosymmetric tetragonal space group. The supramolecular features of the novel crystal structure are strongly related to the role of the water molecule that stabilized columns of o-FHH through strong hydrogen bonding interactions. This structural feature is reflected in the high thermal stability of the compound, which is evidenced by its ability to withstand temperatures in excess of 100 °C without losing the water molecule. Second-harmonic generation (SHG) imaging confirms bulk nonlinearity throughout the entire volume of the crystal, consistent with the acentric class of the novel compound. The combination of a dense hydrogen-bonding network, structural robustness, and the ability to grow millimeter-sized single crystals makes o-FHH a good candidate for further development as an organic NLO material. Full article
(This article belongs to the Section Organic Crystalline Materials)
Show Figures

Figure 1

12 pages, 2329 KB  
Article
Comparative Analysis of the Substituent Effects on the Supramolecular Structure of N′-(4-Methyl-2-nitrophenyl)benzohydrazide and N′-(2-Nitro-(4-trifluoromethyl)phenyl)benzohydrazide)
by Christos P. Constantinides, Syed Raza, Fadwat Bazzi, Nisreen Sharara and Simona Marincean
Crystals 2025, 15(8), 732; https://doi.org/10.3390/cryst15080732 - 19 Aug 2025
Viewed by 222
Abstract
N′-Phenylbenzohydrazides are valuable precursors for air- and moisture-stable Blatter radicals, with applications in magnetism and spintronics. This study presents the single-crystal X-ray structures of N′-(4-methyl-2-nitrophenyl)benzohydrazide (I) and N′-(2-nitro-(4-trifluoromethyl)phenyl)benzohydrazide (II), highlighting the influence of substituents on supramolecular [...] Read more.
N′-Phenylbenzohydrazides are valuable precursors for air- and moisture-stable Blatter radicals, with applications in magnetism and spintronics. This study presents the single-crystal X-ray structures of N′-(4-methyl-2-nitrophenyl)benzohydrazide (I) and N′-(2-nitro-(4-trifluoromethyl)phenyl)benzohydrazide (II), highlighting the influence of substituents on supramolecular arrangement. Compounds I and II are found to crystallize within the monoclinic crystal system, with the space groups I2/a and P21/n, respectively, with centrosymmetric, one-dimensional columnar packing driven by π-π stacking. In I, π-π dimers form between benzoyl rings (3.018 Å), with additional stacking between aryls (3.408 Å) of neighboring dimers. In II, alternating benzoyl and aryl rings stack with interplanar distances of 2.681 and 2.713 Å. Bifurcated intra- and intermolecular hydrogen bonds (1.938–2.478 Å) further stabilize the packing. Compound II exhibits inter-stack F···F contacts (2.924 Å), attributed to steric effects. The trifluoromethyl group enhances N′NCO-NO2 conjugation, resulting in a near-parallel arrangement of aromatic rings and planar geometry at the N′ nitrogen. In contrast, compound I shows reduced conjugation, leading to pyramidalization at the N′ nitrogen and increased hydrazide bond flexibility, as seen in the 56° angle between aromatic rings. Full article
Show Figures

Figure 1

25 pages, 3412 KB  
Article
FEM-Based Modeling of Guided Acoustic Waves on Free and Fluid-Loaded Plates
by Johannes Landskron, Alexander Backer, Conrad R. Wolf, Gerhard Fischerauer and Klaus Stefan Drese
Appl. Sci. 2025, 15(16), 9116; https://doi.org/10.3390/app15169116 - 19 Aug 2025
Viewed by 127
Abstract
Nowadays, guided acoustic waves (GAW) are used for many sensor and actuator applications. The use of numerical methods can facilitate the development and optimization process enormously. In this work, a universally applicable finite element method (FEM)-based model is introduced to determine the dispersion [...] Read more.
Nowadays, guided acoustic waves (GAW) are used for many sensor and actuator applications. The use of numerical methods can facilitate the development and optimization process enormously. In this work, a universally applicable finite element method (FEM)-based model is introduced to determine the dispersion relations of guided acoustic waves. A 2-dimensional unit cell model with Floquet periodicity is used to calculate the corresponding band structure diagrams. Starting from a free plate the model is expanded to encompass single-sided fluid loading. Followed by a straightforward algorithm for post-processing, the data is presented. Additionally, a parametric optimizer is used to adapt the simulations to experimental data measured by a laser Doppler vibrometer on an aluminum plate. Finally, the accuracy of the FEM model is compared to two reference models, achieving good consistency. In the case of the fluid-loaded model, the behavior of critical interactions between the dispersion curves and model-based artifacts is discussed. This approach can be used to model 2D structures like phononic crystals, which cannot be simulated by common GAW models. Moreover, this method can be used as input for advanced multiphysics simulations, including acoustic streaming applications. Full article
Show Figures

Figure 1

19 pages, 11203 KB  
Article
In Situ TEM Observation of Electric Field-Directed Self-Assembly of PbS and PbSe Nanoparticles
by Iryna Zelenina, Harald Böttner, Marcus Schmidt, Yuri Grin and Paul Simon
Nanomaterials 2025, 15(16), 1275; https://doi.org/10.3390/nano15161275 - 18 Aug 2025
Viewed by 292
Abstract
Nano-sized particles of semiconducting lead sulfide and selenide and their 2D thin layers show high potential in applications, such as field-effect transistors, photodetectors, solar cells, and thermoelectric devices. The generation of PbS and PbSe nanobars and nanocubes is evoked by in situ electron [...] Read more.
Nano-sized particles of semiconducting lead sulfide and selenide and their 2D thin layers show high potential in applications, such as field-effect transistors, photodetectors, solar cells, and thermoelectric devices. The generation of PbS and PbSe nanobars and nanocubes is evoked by in situ electron beam treatment, leading to the formation of thin, extended 2D nanolayers. The initial single crystals are decomposed via sublimation of PbS and PbSe in terms of molecular and atomic fragments, which finally condense on the cold substrate to form nanostructures. The fragments in the gas phase were proven using mass spectrometry. In the case of PbS, Pb+ and PbS+ species could were detected, whereas PbSe disintegrated into Pb+, Se2+, and PbSe+. The threshold current that initiates fragmentation increases from PbTe via PbSe up to PbS, which is in line with the increasing crystal formation energies. The uniform orientation of independently formed nanoparticles on the macroscopic scale can be explained by an external electric field acting on emerging dipolar nanospecies. The external dipole field originates from the sputtered mother crystal, where the electron flux is initiated; thus, a current arises between the crystal’s hot and cold ends. On the contrary, in small single crystals, due to the lack of sufficient charge carriers, only local material excavation is detected instead of extended depletion and subsequent nanoparticle deposition. This fragmentation process may represent a new preparation route that provides lead chalcogenide nanofilms that are free of contamination or surfactant participation, which are typical drawbacks associated with the application of wet chemical methods. Full article
Show Figures

Figure 1

14 pages, 9284 KB  
Article
A Rapid and Low-Cost Synthesis of ZSM-5 Single Crystals: The Inhibitory Effect of NH4F on Twinning
by Juan Du, Xiang Wan, Caixiong Song, Kangsheng Wu, Wenbing Yang, Beiye Liu, Qi Yang, Jingjing Fang and Ayesha Razzaq
Inorganics 2025, 13(8), 272; https://doi.org/10.3390/inorganics13080272 - 18 Aug 2025
Viewed by 222
Abstract
Crystal twinning, a common growth phenomenon, can substantially affect material performance in fields such as semiconductors, nonlinear optics, and drug development, yet its elimination during crystallization is challenging. This study presents a method for the controlled synthesis of ZSM-5 zeolite as either single [...] Read more.
Crystal twinning, a common growth phenomenon, can substantially affect material performance in fields such as semiconductors, nonlinear optics, and drug development, yet its elimination during crystallization is challenging. This study presents a method for the controlled synthesis of ZSM-5 zeolite as either single crystals or twinned crystals using kaolin as the primary raw material. The method leverages the etching effect of ammonium fluoride (NH4F) on the aluminosilicate structure derived from pre-treated kaolin. By adjusting the concentrations of NH4F and the structure-directing agent tetrapropylammonium bromide (TPABr), pure ZSM-5 single crystals and twinned crystals were selectively synthesized. Conventionally, NH4F is employed to introduce defects into zeolite structures. In contrast, this work demonstrates its utility in controlling crystal habit. The synthesis utilizes kaolin, an abundant and low-cost aluminosilicate mineral, to provide the entire aluminum source and a portion of the silicon source, offering an economical alternative to expensive precursors like aluminum isopropoxide. The resulting single and twinned crystals exhibited high crystallinity, demonstrating the viability of using natural minerals to produce high-quality zeolites. The physical and chemical properties of the kaolin-derived ZSM-5 were characterized and compared to those of ZSM-5 synthesized from conventional chemical reagents. A growth mechanism for the formation of single and twinned crystals is also proposed. Full article
(This article belongs to the Section Inorganic Solid-State Chemistry)
Show Figures

Figure 1

15 pages, 4040 KB  
Article
The Mechanism of Microcrack Initiation in Fe-C Alloy Under Tensile Deformation in Molecular Dynamics Simulation
by Yanan Zeng, Xiangkan Miao, Yajun Wang, Yukang Yuan, Bingbing Ge, Lanjie Li, Kanghua Wu, Junguo Li and Yitong Wang
Materials 2025, 18(16), 3865; https://doi.org/10.3390/ma18163865 - 18 Aug 2025
Viewed by 292
Abstract
The microcrack initiation and evolution behavior of Fe-C alloy under uniaxial tensile loading are investigated using molecular dynamics (MD) simulations. The model is stretched along the z-axis at a strain rate of 2 × 109 s−1 and temperatures ranging from [...] Read more.
The microcrack initiation and evolution behavior of Fe-C alloy under uniaxial tensile loading are investigated using molecular dynamics (MD) simulations. The model is stretched along the z-axis at a strain rate of 2 × 109 s−1 and temperatures ranging from 300 to 1100 K, aiming to elucidate the microscopic deformation mechanisms during crack evolution under varying thermal conditions. The results indicate that the yield strength of Fe-C alloy decreases with a rising temperature, accompanied by a 25.2% reduction in peak stress. Within the temperature range of 300–700 K, stress–strain curves exhibit a dual-peak trend: the first peak arises from stress-induced transformations in the internal crystal structure, while the second peak corresponds to void nucleation and growth. At 900–1100 K, stress curves display a single-peak pattern, followed by rapid stress decline due to accelerated void coalescence. Structural evolution analysis reveals sequential phase transitions: initial BCC-to-FCC and -HCP transformations occur during deformation, followed by reversion to BCC and unidentified structures post-crack formation. Elevated temperatures enhance atomic mobility, increasing the proportion of disordered/unknown structures and accelerating material failure. Higher temperatures promote faster potential energy equilibration, primarily through accelerated void growth, which drives rapid energy dissipation. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

19 pages, 1516 KB  
Review
Descriptors for Predicting Single- and Multi-Phase Formation in High-Entropy Oxides: A Unified Framework Approach
by Alejandro F. Manchón-Gordón, Paula Panadero-Medianero and Javier S. Blázquez
Materials 2025, 18(16), 3862; https://doi.org/10.3390/ma18163862 - 18 Aug 2025
Viewed by 322
Abstract
High-entropy oxides, HEOs, represent a relatively new class of ceramic materials characterized by the incorporation of multiple cations, typically four or more, into a single-phase crystal structure. This extensive compositional flexibility allows for the introduction of specific chemical elements into a crystal lattice [...] Read more.
High-entropy oxides, HEOs, represent a relatively new class of ceramic materials characterized by the incorporation of multiple cations, typically four or more, into a single-phase crystal structure. This extensive compositional flexibility allows for the introduction of specific chemical elements into a crystal lattice that would normally be unable to accommodate them, making it difficult to predict a priori their properties and crystal structures. Consequently, studying the phase stability of these single-phase materials presents significant challenges. This work examines the key parameters commonly employed to predict the stabilization of HEOs and introduces a unified framework for analyzing their stability. The proposed approach incorporates a normalized configurational entropy per mole of atoms and the relative volume occupied by cations into the mean atomic size deviation. By combining these parameters, the approach enables, as a first approximation, the identification of compositional ranges that favor the formation of single-phase and multi-phase HEO compounds with rock salt, spinel, fluorite, pyrochlore, and perovskite structures. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

Back to TopTop