Effects of Processing Strategies and La + Sm Co-Doping on the Thermoelectric Performance of A-Site-Deficient SrTiO3-δ Ceramics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Particle Size
3.2. Crystal and Grain Structure
3.3. Thermogravimetric Analysis
3.4. Thermoelectric Properties
3.4.1. VSTO-A Ceramics
3.4.2. VSTO-H Ceramics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, B.; Wang, W.; Liu, S.; Wang, Y.; Wang, C.; Chen, Y.; Xie, L.; Huang, M.; He, J. High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics. Science 2022, 377, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.T.; Sun, Q.; Zhong, Y.; Deng, Q.; Gan, L.; Lv, F.L.; Shi, X.; Chen, Z.; Ang, R. High-performance in n-type PbTe-based thermoelectric materials achieved by synergistically dynamic doping and energy filtering. Nano Energy 2022, 91, 106706. [Google Scholar] [CrossRef]
- Zilber, T.; Cohen, S.; Fuks, D.; Gelbstein, Y. TiNiSn half-Heusler crystals grown from metallic flux for thermoelectric applications. J. Alloys Compd. 2019, 781, 1132–1138. [Google Scholar] [CrossRef]
- Meroz, O.; Gelbstein, Y. Thermoelectric Bi2Te3-xSex alloys for efficient thermal to electrical energy conversion. Phys. Chem. Chem. Phys. 2018, 20, 4092–4099. [Google Scholar] [CrossRef] [PubMed]
- Qiu, P.; Cheng, J.; Chai, J.; Du, X.; Xia, X.; Ming, C.; Zhu, C.; Yang, J.; Sun, Y.; Xu, F.; et al. Exceptionally Heavy Doping Boosts the Performance of Iron Silicide for Refractory Thermoelectrics. Adv. Energy Mater. 2022, 12, 2200247. [Google Scholar] [CrossRef]
- Tian, Z.; Lee, S.; Chen, G. A Comprehensive Review of Heat Transfer in Thermoelectric Materials and Devices. Annu. Rev. Heat Transf. 2014, 17, 425–483. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, C.L.; Li, Y.; Su, W.B.; Zhu, Y.H.; Li, J.C.; Mei, L.M. Influence of rare earth doping on thermoelectric properties of SrTiO3 ceramics. J. Appl. Phys. 2013, 114, 223714. [Google Scholar] [CrossRef]
- Sun, R.R.; Qin, X.Y.; Li, L.L.; Li, D.; Wang, N.N.; Zhang, J.; Wang, Q.Q. Transport and thermoelectric properties of Sr3(Ti0.95R0.05)2O7 (R = Ta, Nb, W) oxides. J. Appl. Phys. 2012, 112, 124904. [Google Scholar] [CrossRef]
- Koumoto, K.; Terasaki, I. Complex Oxide Materials for Thermoelectric Applications. MRS Bull. 2006, 31, 206–210. [Google Scholar] [CrossRef]
- Lu, Z. La Doped SrTiO3 Based Oxide Thermoelectrics; University of Sheffield: Sheffield, UK, 2016. [Google Scholar]
- Košir, M.; Podlogar, M.; Daneu, N.; Rečnik, A.; Guilmeau, E.; Bernik, S. Phase formation, microstructure development and thermoelectric properties of (ZnO)kIn2O3 ceramics. J. Eur. Ceram. Soc. 2017, 37, 2833–2842. [Google Scholar] [CrossRef]
- Ohtaki, M.; Araki, K.; Yamamoto, K. High thermoelectric performance of dually doped ZnO ceramics. J. Electron. Mater. 2009, 38, 1234–1238. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, B.Y.; Kang, H.J.; Li, Y.; Yaer, X.; Li, J.F.; Tan, Q.; Zhang, S.; Fan, G.; Liu, C.; et al. Record high thermoelectric performance in bulk SrTiO3 via nano-scale modulation doping. Nano Energy 2017, 35, 387–395. [Google Scholar] [CrossRef]
- Lin, Y.; Norman, C.; Srivastava, D.; Azough, F.; Wang, L.; Robbins, M.; Simpson, K.; Freer, R.; Kinloch, I.A. Thermoelectric Power Generation from Lanthanum Strontium Titanium Oxide at Room Temperature through the Addition of Graphene. ACS Appl. Mater. Interfaces 2015, 7, 15898–15908. [Google Scholar] [CrossRef] [PubMed]
- Okhay, O.; Zlotnik, S.; Xie, W.; Orlinski, K.; Gallo, M.J.H.; Otero-Irurueta, G.; Fernandes, A.J.S.; Pawlak, D.A.; Weidenkaff, A.; Tkachb, A. Thermoelectric performance of Nb-doped SrTiO3 enhanced by reduced graphene oxide and Sr deficiency cooperation. Carbon N. Y. 2018, 143, 215–222. [Google Scholar] [CrossRef]
- Zheng, G.H.; Dai, Z.X.; Li, H.B.; Wang, H.Q.; Li, Y.Q.; Xu, X.F.; Huang, B.T.; Ma, Y.Q.; Li, G. Improving the Thermoelectric Properties of Sr0.9La0.1TiO3 by Ag Addition. J. Low Temp. Phys. 2014, 174, 128–135. [Google Scholar] [CrossRef]
- Hanbo, L.; Ganhong, Z.; Zhenxiang, D.; Zhenheng, Y.; Haiqiu, W.; Yongqing, M. Thermoelectric properties of Sr0.9La0.1TiO3 and Sr2.7La0.3Ti2O7 with 15% Ag addition. J. Rare Earths 2014, 32, 314–319. [Google Scholar] [CrossRef]
- Srivastava, D.; Norman, C.; Azough, F.; Schäfer, M.C.; Guilmeau, E.; Freer, R. Improving the thermoelectric properties of SrTiO3-based ceramics with metallic inclusions. J. Alloys Compd. 2018, 731, 723–730. [Google Scholar] [CrossRef]
- Acharya, M.; Jana, S.S.; Ranjan, M.; Maiti, T. High performance (ZT > 1) n-type oxide thermoelectric composites from earth abundant materials. Nano Energy 2021, 84, 105905. [Google Scholar] [CrossRef]
- Qin, M.; Gao, F.; Wang, A.M.; Zhang, C.; Zhang, Q.; Wang, L. Fabrication and High-Temperature Thermoelectric Properties of Ti-Doped Sr0.9La0.1TiO3 Ceramics. Ceram. Int. 2016, 42, 16644–16649. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, H.; Lei, W.; Sinclair, D.C.; Reaney, I.M. High-Figure-of-Merit Thermoelectric La-Doped A-Site-Deficient SrTiO3 Ceramics. Chem. Mater. 2016, 28, 925–935. [Google Scholar] [CrossRef]
- Kovalevsky, A.V.; Aguirre, M.H.; Populoh, S.; Patrício, S.G.; Ferreira, N.M.; Mikhalev, S.M.; Fagg, D.P.; Weidenkaff, A.; Frade, J.R. Designing strontium titanate-based thermoelectrics: Insight into defect chemistry mechanisms. J. Mater. Chem. A 2017, 5, 3909–3922. [Google Scholar] [CrossRef]
- Mendelson, M.I. Average Grain Size in Polycrystalline Ceramics. J. Am. Ceram. Soc. 1969, 52, 443–446. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides. Acta Cryst. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Wang, H.C.; Wang, C.L.; Su, W.B.; Liu, J.; Sun, Y.; Peng, H.; Mei, L.M. Doping effect of La and Dy on the thermoelectric properties of SrTiO3. J. Am. Ceram. Soc. 2011, 94, 838–842. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C. Thermoelectric properties of Yb-doped La0.1Sr0.9TiO3 ceramics at high temperature. Ceram. Int. 2013, 39, 941–946. [Google Scholar] [CrossRef]
- Neagu, D.; Irvine, J.T.S. Structure and Properties of La0.4 Sr0. 4TiO3 Ceramics for Use as Anode Materials in Solid Oxide Fuel Cells. Chem. Mater. 2010, 22, 5042–5053. [Google Scholar] [CrossRef]
- Srivastava, D.; Norman, C.; Azough, F.; Schäfer, M.C.; Guilmeau, E.; Kepaptsoglou, D.; Ramasse, Q.M.; Nicotra, G.; Freer, R. Tuning the Thermoelectric Properties of A-site Deficient SrTiO3 Ceramics by Vacancies and Carrier Concentration. Phys. Chem. Chem. Phys. 2016, 18, 26475–26486. [Google Scholar] [CrossRef] [Green Version]
- Boston, R.; Schmidt, W.L.; Lewin, G.D.; Iyasara, A.C.; Lu, Z.; Zhang, H.; Sinclair, D.C.; Reaney, I.M. Protocols for the fabrication, characterization, and optimization of n-type thermoelectric ceramic oxides. Chem. Mater. 2017, 29, 265–280. [Google Scholar] [CrossRef] [Green Version]
- Kieslich, G.; Cerretti, G.; Veremchuk, I.; Hermann, R.P.; Panthöfer, M.; Grin, J.; Tremel, W. A chemists view: Metal oxides with adaptive structures for thermoelectric applications. Phys. Status Solidi Appl. Mater. Sci. 2016, 213, 808–823. [Google Scholar] [CrossRef]
- Zheng, G.H.; Dai, Z.X.; Dong, Y.Q.; Zan, F.L.; Zou, D.; Ma, Y.Q.; Li, G. Low thermal conductivity for Sr1−x LaxTiO3. Mater. Res. Innov. 2012, 16, 438–441. [Google Scholar] [CrossRef]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovalevsky, A.V.; Yaremchenko, A.A.; Populoh, S.; Thiel, P.; Fagg, D.P.; Weidenkaff, A.; Frade, J.R. Towards a high thermoelectric performance in rare-earth substituted SrTiO3: Effects provided by strongly-reducing sintering conditions. Phys. Chem. Chem. Phys. 2014, 16, 26946–26954. [Google Scholar] [CrossRef]
- Ekren, D.; Azough, F.; Gholinia, A.; Day, S.J.; Hernandez-Maldonado, D.; Kepaptsoglou, D.M.; Ramasse, Q.M.; Freer, R. Enhancing the thermoelectric power factor of Sr0.9Nd0.1TiO3 through control of the nanostructure and microstructure. J. Mater. Chem. A 2018, 6, 24928–24939. [Google Scholar] [CrossRef] [Green Version]
- Iyasara, A.C.; Schmidt, W.L.; Boston, R.; Sinclair, D.C.; Reaney, I.M. La and Sm Co-doped SrTiO3-δ Thermoelectric Ceramics. Mater. Today Proc. 2017, 4, 12360–12367. [Google Scholar] [CrossRef]
- Dehkordi, A.M. An Experimental Investigation towards Improvement of Thermoelectric Properties of Strontium Titanate Ceramics. Ph.D. Thesis, Clemson University, Clemson, SC, USA, 2014. [Google Scholar]
- Wang, H.C.; Wang, C.L.; Su, W.B.; Liu, J.; Zhao, Y.; Peng, H.; Zhang, J.L.; Zhao, M.L.; Li, J.C.; Yin, N.; et al. Enhancement of thermoelectric figure of merit by doping Dy in La0.1 Sr0.9TiO3 ceramic. Mater. Res. Bull. 2010, 45, 809–812. [Google Scholar] [CrossRef]
- Wang, H.C.; Wang, C.L.; Su, W.B.; Liu, J.; Peng, H.; Zhang, J.L.; Zhao, M.L.; Li, J.C.; Yin, N.; Mei, M.L. Substitution effect on the thermoelectric properties of reduced Nb-doped Sr0.95La0.05TiO3 ceramics. J. Alloys Compd. 2009, 486, 693–696. [Google Scholar] [CrossRef]
Composition | x | Particle Diameter (μm) | ||
---|---|---|---|---|
d10 | d50 | d90 | ||
Sr1-3x/2Lax/2TiO3 (VSTO-A) | 0.05 | 2.2 | 4.9 | 12.4 |
0.10 | 2.4 | 5.0 | 9.8 | |
0.15 | 2.7 | 5.6 | 10.7 | |
0.20 | 2.9 | 6.0 | 11.5 | |
0.30 | 2.0 | 4.3 | 10.4 | |
Sr1-3x/2Lax/2TiO3 (VSTO-H) | 0.05 | 1.6 | 3.6 | 7.8 |
0.10 | 1.0 | 2.4 | 11.9 | |
0.15 | 1.6 | 3.3 | 7.6 | |
0.20 | 2.1 | 4.7 | 10.8 | |
0.30 | 1.8 | 3.9 | 9.8 |
Composition | Lattice Parameter (Å) | Cell Volume (Å3) | Relative Density (%) |
---|---|---|---|
(a) | |||
0.05 | 3.91 | 59.776 | 98.4 |
0.10 | 3.909 | 59.736 | 98.9 |
0.15 | 3.907 | 59.639 | 98.2 |
0.20 | 3.903 | 59.456 | 98.4 |
0.30 | 3.902 | 59.41 | 98.9 |
(b) | |||
0.05 | 3.899 | 59.273 | 98.1 |
0.10 | 3.906 | 59.593 | 96.1 |
0.15 | 3.907 | 59.639 | 99.1 |
0.20 | 3.91 | 59.776 | 98.7 |
0.30 | 3.902 | 59.41 | 98.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iyasara, A.C.; Lu, Z.; Schmidt, W.L.; Sinclair, D.C.; Reaney, I.M. Effects of Processing Strategies and La + Sm Co-Doping on the Thermoelectric Performance of A-Site-Deficient SrTiO3-δ Ceramics. Crystals 2022, 12, 1622. https://doi.org/10.3390/cryst12111622
Iyasara AC, Lu Z, Schmidt WL, Sinclair DC, Reaney IM. Effects of Processing Strategies and La + Sm Co-Doping on the Thermoelectric Performance of A-Site-Deficient SrTiO3-δ Ceramics. Crystals. 2022; 12(11):1622. https://doi.org/10.3390/cryst12111622
Chicago/Turabian StyleIyasara, Adindu C., Zhilun Lu, Whitney L. Schmidt, Derek C. Sinclair, and Ian M. Reaney. 2022. "Effects of Processing Strategies and La + Sm Co-Doping on the Thermoelectric Performance of A-Site-Deficient SrTiO3-δ Ceramics" Crystals 12, no. 11: 1622. https://doi.org/10.3390/cryst12111622
APA StyleIyasara, A. C., Lu, Z., Schmidt, W. L., Sinclair, D. C., & Reaney, I. M. (2022). Effects of Processing Strategies and La + Sm Co-Doping on the Thermoelectric Performance of A-Site-Deficient SrTiO3-δ Ceramics. Crystals, 12(11), 1622. https://doi.org/10.3390/cryst12111622