Numerical Study of the Passage of Natural Gas Components through C60 Fullerite in the Low-Temperature Phase
Abstract
:1. Introduction
2. Physical Statement of the Problem
3. Mathematical Statement of the Problem
4. Results and Discussion
4.1. Thermal Motion of Natural Gas Components
4.2. Velocity Effect on the Permeability of Fullerite
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Ruoff, R.S.; Ruoff, A.L. The Bulk Modulus of C60 Molecules and Crystals: A Molecular Mechanics Approach. Appl. Phys. Lett. 1991, 59, 1553–1555. [Google Scholar] [CrossRef] [Green Version]
- Shen, H. The Compressive Mechanical Properties of Cn (n = 20, 60, 80, 180) and Endohedral M@C60 (M = Na, Al, Fe) Fullerene Molecules. Mol. Phys. 2007, 105, 2405–2409. [Google Scholar] [CrossRef]
- Du, Z.; Jannatun, N.; Yu, D.; Ren, J.; Huang, W.; Lu, X. C60-Decorated Nickel–Cobalt Phosphide as an Efficient and Robust Electrocatalyst for Hydrogen Evolution Reaction. Nanoscale 2018, 10, 23070–23079. [Google Scholar] [CrossRef] [PubMed]
- Nisha, M.S.; Venthan, S.M.; Kumar, P.S.; Singh, D. Tribological Properties of Carbon Nanotube and Carbon Nanofiber Blended Polyvinylidene Fluoride Sheets Laminated on Steel Substrates. Int. J. Chem. Eng. 2022, 2022, 3408115. [Google Scholar] [CrossRef]
- Ku, B.-C.; Han, Y.-C.; Lee, J.-E.; Lee, J.-K.; Park, S.-H.; Hwang, Y.-J. Tribological Effects of Fullerene (C60) Nanoparticles Added in Mineral Lubricants According to Its Viscosity. Int. J. Precis. Eng. Manuf. 2010, 11, 607–611. [Google Scholar] [CrossRef]
- Arie, A.A.; Chang, W.; Lee, J.K. Effect of Fullerene Coating on Silicon Thin Film Anodes for Lithium Rechargeable Batteries. J. Solid State Electrochem. 2010, 14, 51–56. [Google Scholar] [CrossRef]
- Mackiewicz, N.; Bark, T.; Cao, B.; Delaire, J.A.; Riehl, D.; Ling, W.L.; Foillard, S.; Doris, E. Fullerene-Functionalized Carbon Nanotubes as Improved Optical Limiting Devices. Carbon 2011, 49, 3998–4003. [Google Scholar] [CrossRef]
- Seo, K.-J.; Kim, D.-E. Molecular Dynamics Investigation on the Nano-Mechanical Behaviour of C60 Fullerene and Its Crystallized Structure. Nanoscale 2020, 12, 9849–9858. [Google Scholar] [CrossRef] [PubMed]
- Smazna, D.; Rodrigues, J.; Shree, S.; Postica, V.; Neubüser, G.; Martins, A.F.; Ben Sedrine, N.; Jena, N.K.; Siebert, L.; Schütt, F.; et al. Buckminsterfullerene Hybridized Zinc Oxide Tetrapods: Defects and Charge Transfer Induced Optical and Electrical Response. Nanoscale 2018, 10, 10050–10062. [Google Scholar] [CrossRef]
- Penkova, A.V.; Acquah, S.F.; Piotrovskiy, L.B.; Markelov, D.A.; Semisalova, A.S.; Kroto, H.W. Fullerene Derivatives as Nano-Additives in Polymer Composites. Russ. Chem. Rev. 2017, 86, 530–566. [Google Scholar] [CrossRef]
- Horikawa, T.; Kinoshita, T.; Suito, K.; Onodera, A. Compressibility Measurement of C60 Using Synchrotron Radiation. Solid State Commun. 2000, 114, 121–125. [Google Scholar] [CrossRef]
- Sundqvist, B. Fullerenes under High Pressures. Adv. Phys. 1999, 48, 1–134. [Google Scholar] [CrossRef]
- Spitsina, N.G.; Motyakin, M.V.; Bashkin, I.V.; Meletov, K.P. C60 Fullerene and Its Molecular Complexes under Axial and Shear Deformation. J. Phys. Condens. Matter 2002, 14, 11089–11092. [Google Scholar] [CrossRef]
- Terrones, H.; Terrones, M. Curved Nanostructured Materials. New J. Phys. 2003, 5, 126. [Google Scholar] [CrossRef]
- Heiney, P.A.; Vaughan, G.B.M.; Fischer, J.E.; Coustel, N.; Cox, D.E.; Copley, J.R.D.; Neumann, D.A.; Kamitakahara, W.A.; Creegan, K.M.; Cox, D.M.; et al. Discontinuous Volume Change at the Orientational-Ordering Transition in Solid C60. Phys. Rev. B 1992, 45, 4544–4547. [Google Scholar] [CrossRef]
- Johnson, R.D.; Yannoni, C.S.; Dorn, H.C.; Salem, J.R.; Bethune, D.S. C60 Rotation in the Solid State: Dynamics of a Faceted Spherical Top. Science 1992, 255, 1235–1238. [Google Scholar] [CrossRef]
- Johnson, R.D.; Yannoni, C.S.; de Vries, M.S. C60 Solid State Rotational Dynamics and Production and EPR Spectroscopy of Fullerenes Containing Metal Atoms. Nanotechnology 1992, 3, 164–166. [Google Scholar] [CrossRef]
- Bubenchikov, A.M.; Bubenchikov, M.A.; Lun-Fu, A.V.; Ovchinnikov, V.A. Effect of a Charged Particle Propagating in C60 Fullerite. Fuller. Nanotub. Carbon Nanostructures 2021, 29, 442–445. [Google Scholar] [CrossRef]
- Kang, J.W.; Hwang, H.J. Fullerene Shuttle Memory Device: Classical Molecular Dynamics Study. J. Phys. Soc. Jpn. 2004, 73, 1077–1081. [Google Scholar] [CrossRef]
- Lun-Fu, A.V.; Bubenchikov, A.M.; Bubenchikov, M.A.; Ovchinnikov, V.A. Molecular Dynamics Study of Collective Behavior of Carbon Nanotori in Columnar Phase. Crystals 2021, 11, 1197. [Google Scholar] [CrossRef]
- Sławianowski, J.J.; Kotowski, R.K. Classical Dynamics of Fullerenes. Z. Für Angew. Math. Phys. 2017, 68, 55. [Google Scholar] [CrossRef]
- Lun-Fu, A.V.; Bubenchikov, A.M.; Bubenchikov, M.A.; Ovchinnikov, V.A. Computational Analysis of Strain-Induced Effects on the Dynamic Properties of C60 in Fullerite. Crystals 2022, 12, 260. [Google Scholar] [CrossRef]
- González, M.A. Force Fields and Molecular Dynamics Simulations. Éc. Thématique Société Fr. Neutron. 2011, 12, 169–200. [Google Scholar] [CrossRef]
- Kachour, Z.; Habchi, M.; Mesli, S.M.; Ziane, M.; Kotbi, M. On the Orientational Correlations in the Supercooled Chloride Lithium Aqueous Solution Using the Hybrid Reverse Monte Carlo Simulation. Int. J. Mod. Phys. C 2022, 33, 2250021. [Google Scholar] [CrossRef]
- Liang, Y.; Muhammad, W.; Hart, G.R.; Nartowt, B.J.; Chen, Z.J.; Yu, J.B.; Roberts, K.B.; Duncan, J.S.; Deng, J. A General-Purpose Monte Carlo Particle Transport Code Based on Inverse Transform Sampling for Radiotherapy Dose Calculation. Sci. Rep. 2020, 10, 9808. [Google Scholar] [CrossRef]
- Haghighat, A. Monte Carlo Methods for Particle Transport, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2020; ISBN 978-0-429-19839-7. [Google Scholar]
- Bubenchikov, M.A.; Bubenchikov, A.M.; Lun-Fu, A.V.; Ovchinnikov, V.A. Rotational Dynamics of Fullerenes in the Molecular Crystal of Fullerite. Phys. Status Solidi A 2021, 218, 2000174. [Google Scholar] [CrossRef]
- Ruoff, R.S.; Hickman, A.P. Van Der Waals Binding to Fullerenes to a Graphite Plane. J. Phys. Chem. 1993, 97, 2494–2496. [Google Scholar] [CrossRef]
- Baowan, D.; Hill, J.M. Mathematical Modeling of Interaction Energies between Nanoscale Objects: A Review of Nanotechnology Applications. Adv. Mech. Eng. 2016, 8, 168781401667702. [Google Scholar] [CrossRef] [Green Version]
- Thamwattana, N.; Baowan, D.; Hill, J.M. Continuum Modelling for Interactions Between Fullerenes and Other Carbon Nanostructures. J. Comput. Theor. Nanosci. 2009, 6, 972–984. [Google Scholar] [CrossRef]
- Ortega, J.M.; Poole, W.G. An Introduction to Numerical Methods for Differential Equations; Pitman: Mass, MA, USA, 1981; ISBN 978-0-273-01686-1. [Google Scholar]
- Arora, G.; Joshi, V.; Garki, I.S. Developments in Runge–Kutta Method to Solve Ordinary Differential Equations. In Recent Advances in Mathematics for Engineering; Ram, M., Ed.; Series: Mathematical engineering, manufacturing, and management sciences; CRC Press: Boca Raton, FL, USA, 2020; pp. 193–202. ISBN 978-0-429-20030-4. [Google Scholar]
Parameters | Mixture | |||
---|---|---|---|---|
He-C | CH4-C | C2H6-C | Xe-C | |
ε/kb | 22.875 | 87.05 | 109.15 | 108.28 |
σ, nm | 0.3102 | 0.3727 | 0.4024 | 0.3854 |
mp, Da | 4 | 16 | 30 | 131 |
Mean Values | Particles | |||
---|---|---|---|---|
He | CH4 | C2H6 | Xe | |
fsph | 0.3778 | 0.36 | 0.3244 | 0.3956 |
fΣ | 0.4089 | 0.3115 | 0.2778 | 0.4067 |
δ | 7.6% | 15.6% | 16.8% | 2.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borodin, V.I.; Bubenchikov, A.M.; Bubenchikov, M.A.; Ovchinnikov, V.A.; Chelnokova, A.S. Numerical Study of the Passage of Natural Gas Components through C60 Fullerite in the Low-Temperature Phase. Crystals 2022, 12, 1653. https://doi.org/10.3390/cryst12111653
Borodin VI, Bubenchikov AM, Bubenchikov MA, Ovchinnikov VA, Chelnokova AS. Numerical Study of the Passage of Natural Gas Components through C60 Fullerite in the Low-Temperature Phase. Crystals. 2022; 12(11):1653. https://doi.org/10.3390/cryst12111653
Chicago/Turabian StyleBorodin, Vladislav I., Alexey M. Bubenchikov, Mikhail A. Bubenchikov, Vyacheslav A. Ovchinnikov, and Anna S. Chelnokova. 2022. "Numerical Study of the Passage of Natural Gas Components through C60 Fullerite in the Low-Temperature Phase" Crystals 12, no. 11: 1653. https://doi.org/10.3390/cryst12111653
APA StyleBorodin, V. I., Bubenchikov, A. M., Bubenchikov, M. A., Ovchinnikov, V. A., & Chelnokova, A. S. (2022). Numerical Study of the Passage of Natural Gas Components through C60 Fullerite in the Low-Temperature Phase. Crystals, 12(11), 1653. https://doi.org/10.3390/cryst12111653