Determination of the Elasticity Coefficients for Nematic Liquid Crystal Elastomers
Abstract
:1. Introduction
2. Theory
3. Application to Azobenzene-Functionalized Liquid Crystal Elastomers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Gennes, P.G. Physique moléculaire-réflexions sur un type de polymères nématiques. Comptes Rendus De L’académie Des. Sci. B 1975, 281, 101–103. [Google Scholar]
- de Gennes, P.G. Liquid Crystals of One and Two-Dimensional Order; Helfrich, W., Heppke, G., Eds.; Springer: New York, NY, USA, 1980. [Google Scholar]
- Finkelmann, H.; Koch, H.J.; Rehage, G. Investigations on liquid crystalline polysiloxanes 3, Liquid crystalline elastomers-a new type of liquid crystalline material. Makromol. Chem. Rapid Commun. 1981, 2, 317–322. [Google Scholar] [CrossRef]
- Warner, M.; Terentjev, E.M. Liquid Crystal Elastomers; International Series of Monographs on Physics; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Ohm, C.; Brehmer, M.; Zentel, R. Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 2010, 22, 3366–3387. [Google Scholar]
- Guin, T.; Settle, M.J.; Kowalski, B.A.; Auguste, A.D.; Beblo, R.V.; Reich, G.W.; White, T.J. Layered liquid crystal elastomer actuators. Nat. Commun. 2018, 9, 2531. [Google Scholar] [CrossRef] [Green Version]
- Mistry, D.; Traugutt, N.A.; Yu, K.; Yakacki, C.M. Processing and reprocessing liquid crystal elastomer actuators. J. Appl. Phys. 2021, 129, 130901. [Google Scholar] [CrossRef]
- Shang, Y.; Wang, J.; Ikeda, T.; Jiang, L. Bio-inspired liquid crystal actuator materials. J. Mater. Chem. C 2019, 7, 3413–3428. [Google Scholar] [CrossRef]
- Petsch, S.; Rix, R.; Khatri, B.; Schuhladen, S.; Müller, P.; Zentel, R.; Zappe, H. Smart artificial muscle actuators: Liquid crystal elastomers with integrated temperature feedback. Sens. Actuators A Phys. 2015, 231, 44–51. [Google Scholar] [CrossRef]
- Jaggessar, A.; Shahali, H.; Mathew, A.; Yarlagadda, P.K. Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants. J. Nanobiotechnol. 2017, 15, 64. [Google Scholar] [CrossRef] [Green Version]
- Schuhladen, S.; Preller, F.; Rix, R.; Petsch, S.; Zentel, R.; Zappe, H. Iris-Like Tunable Aperture Employing Liquid-Crystal Elastomers. Adv. Mater. 2014, 26, 7247–7251. [Google Scholar] [CrossRef]
- Shahsavan, H.; Salili, S.M.; Jákli, A.; Zhao, B. Smart Muscle-Driven Self-Cleaning of Biomimetic Microstructures from Liquid Crystal Elastomers. Adv. Mater. 2015, 27, 6828–6833. [Google Scholar] [CrossRef]
- Montero de Espinosa, L.; Meesorn, W.; Moatsou, D.; Weder, C. Bioinspired Polymer Systems with Stimuli-Responsive Mechanical Properties. Chem. Rev. 2017, 117, 12851–12892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilievski, F.; Mazzeo, A.D.; Shepherd, R.F.; Chen, X.; Whitesides, G.M. Soft Robotics for Chemists. Angew. Chem. Int. Ed. 2011, 50, 1890–1895. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Zhang, J.; Li, H.; Shi, Z.; Meng, Q.; Liu, S.; Chen, J.; Liu, X. Toward Application of Liquid Crystalline Elastomer for Smart Robotics: State of the Art and Challenges. Polymers 2021, 13, 1889. [Google Scholar] [CrossRef] [PubMed]
- Ula, S.W.; Traugutt, N.A.; Volpe, R.H.; Patel, R.R.; Yu, K.; Yakacki, C.M. Liquid crystal elastomers: An introduction and review of emerging technologies. Liq. Cryst. Rev. 2018, 6, 78–107. [Google Scholar] [CrossRef]
- Martinoty, P.; Stein, P.; Finkelmann, H.; Pleiner, H.; Brand, H.R. Mechanical properties of mono-domain side chain nematic elastomers. Eur. Phys. J. E Soft Matter 2004, 14, 311–321. [Google Scholar] [CrossRef]
- Martinoty, P.; Stein, P.; Finkelmann, H.; Pleiner, H.; Brand, H.R. Reply to the commentary by Terentjev EM, Warner M on “Mechanical properties of monodomain side chain nematic elastomers”. Eur. Phys. J. E 2004, 14, 329–332. [Google Scholar] [CrossRef]
- Martinoty, P.; Stein, P.; Finkelmann, H.; Pleiner, H.; Brand, H.R. Reply to the commentary by Stenull O, and Lubensky TC on “Mechanical properties of monodomain side chain nematic elastomers”. Eur. Phys. J. E 2004, 14, 339–340. [Google Scholar] [CrossRef]
- Stenull, O.; Lubensky, T.C. Commentary on “Mechanical properties of monodomain sidechain nematic elastomers” by Martinoty, P.; et al. Eur. Phys. J. E 2004, 14, 333–337. [Google Scholar] [CrossRef]
- Terentjev, E.M.; Warner, M. Commentary on “Mechanical properties of monodomain side chain nematic elastomers” by Martinoty, P., Stein, P., Finkelmann, H., Pleiner, H., Brand, H.R. Eur. Phys. J. E 2004, 14, 323–327. [Google Scholar] [CrossRef]
- Warner, M. New elastic behaviour arising from the unusual constitutive relation of nematic solids. J. Mech Phys. Solids 1999, 47, 1355–1377. [Google Scholar] [CrossRef]
- Mistry, D.; Morgan, P.B.; Clamp, J.H.; Gleeson, H.F. New insights into the nature of semi-soft elasticity and “mechanical-Fréedericksz transitions” in liquid crystal elastomers. Soft Matter 2018, 14, 1301–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mistry, D.; Gleeson, H.F. Mechanical deformations of a liquid crystal elastomer at director angles between 0° and 90°: Deducing an empirical model encompassing anisotropic nonlinearity. J. Polym. Sci. B Polym. Phys. 2019, 57, 1367–1377. [Google Scholar] [CrossRef]
- Mistry, D.; Connell, S.D.; Mickthwaite, S.L.; Morgan, P.B.; Clamp, J.H.; Gleeson, H.F. Coincident molecular auxeticity and negative order parameter in a liquid crystal elastomer. Nat. Commun. 2018, 9, 5095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihai, L.A.; Goriely, A. A plate theory for nematic liquid crystalline solids. J. Mech. Phys. Solids 2020, 144, 104101. [Google Scholar] [CrossRef]
- Mihai, L.A.; Goriely, A. Likely striping in stochastic nematic elastomers. Math. Mech. Solids 2020, 25, 108128652091495. [Google Scholar] [CrossRef]
- Okamoto, S.; Sakurai, S.; Urayama, K. Effect of stretching angle on the stress plateau behavior of main-chain liquid crystal elastomers. Soft Matter 2021, 17, 3128–3136. [Google Scholar] [CrossRef]
- De Gennes, P.G. Possibilites Offertes Par La Reticulation de Polymeres En Presence d’un Cristal Liquide. Phys. Lett. A 1969, 28, 725–726. [Google Scholar] [CrossRef]
- Golubovic, L.; Lubensky, T.C. Nonlinear elasticity of amorphous solids. Phys. Rev. Lett. 1989, 63, 1082. [Google Scholar] [CrossRef] [PubMed]
- Lubensky, T.C.; Mukhopadhyay, R.; Radzihovsky, L.; Xing, X. Symmetries and elasticity of nematic gels. Phys. Rev. E 2002, 66, 011702. [Google Scholar] [CrossRef] [Green Version]
- Dey, S.; Agra-Kooijman, D.M.; Ren, W.; McMullan, P.J.; Griffin, A.C.; Kumar, S. Soft Elasticity in Main Chain Liquid Crystal Elastomers. Crystals 2013, 3, 363–390. [Google Scholar] [CrossRef]
- Finkelmann, H.; Greve, A.; Warner, M. The elastic anisotropy of nematic elastomers. Eur. J. Phys. E 2001, 5, 281. [Google Scholar] [CrossRef]
- Oh, S.W.; Guo, T.; Kuenstler, A.S.; Hayward, R.; Palffy-Muhoray, P.; Zheng, X. Measuring the five elastic constants of a nematic liquid crystal elastomer. Liquid Crystals 2020, 48, 511–520. [Google Scholar] [CrossRef]
- Hakobyan, M.R.; Hakobyan, R.S. Some elastic properties of solid nematics. J. Contemp. Phys. (Armenian Ac. Sci.) 2017, 52, 295–302. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Theory of Elasticity (Volume 7 of a Course of Theoretical Physics); Pergamon Press: Oxford, UK, 1970. [Google Scholar]
- Hovakimyan, M.T.; Sargsyan, M.L.; Hakobyan, R.S.; Hakobyan, M.R. Elastic properties of solid nematics. Mol. Cryst. Liq. Cryst. 2020, 713, 55–64. [Google Scholar] [CrossRef]
- Lempriere, B.M. Poisson’s ratio in orthotropic materials. AIAA J 1968, 6, 2226–2227. [Google Scholar] [CrossRef]
- De Gennes, P.G.; Prost, J. The Physics of Liquid Crystals, 2nd ed.; Clarendon Press: Oxford, UK, 1993. [Google Scholar]
- Kröger, M.; Sellers, S. On the Signs of the Leslie Viscosities α2 and α3 for Nematics and Discotic Nematics. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Mol. Cryst. Liq. Cryst. 1997, 293, 17–27. [Google Scholar] [CrossRef]
- Pasechnik, S.V.; Chigrinov, V.G.; Shmeliova, D.V. Liquid Crystals: Viscous and Elastic Properties in Theory and Applications; Wiley: New York, NY, USA, 2009; p. 424. [Google Scholar]
Sample | Molar Composition | Coefficients (MPa) | |||||
---|---|---|---|---|---|---|---|
Acryl/Amine | 2Azo/Total Reactive Agents | ||||||
1 | 1.1 | 1 | 2.51 | 197.5 | 0.8 | 2.51 | 55.5 |
2 | 1.1 | 2 | 2 | 42.6 | 1.1 | 1.9 | 41.4 |
3 | 1.1 | 4 | 2.2 | 199.7 | 0.5 | 2.3 | 46.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sargsyan, M.; Gevorgyan, G.; Hakobyan, M.; Hakobyan, R. Determination of the Elasticity Coefficients for Nematic Liquid Crystal Elastomers. Crystals 2022, 12, 1654. https://doi.org/10.3390/cryst12111654
Sargsyan M, Gevorgyan G, Hakobyan M, Hakobyan R. Determination of the Elasticity Coefficients for Nematic Liquid Crystal Elastomers. Crystals. 2022; 12(11):1654. https://doi.org/10.3390/cryst12111654
Chicago/Turabian StyleSargsyan, Maksim, Gevorg Gevorgyan, Mariam Hakobyan, and Rafik Hakobyan. 2022. "Determination of the Elasticity Coefficients for Nematic Liquid Crystal Elastomers" Crystals 12, no. 11: 1654. https://doi.org/10.3390/cryst12111654
APA StyleSargsyan, M., Gevorgyan, G., Hakobyan, M., & Hakobyan, R. (2022). Determination of the Elasticity Coefficients for Nematic Liquid Crystal Elastomers. Crystals, 12(11), 1654. https://doi.org/10.3390/cryst12111654