Extreme Learning Machine Approach to Modeling the Superconducting Critical Temperature of Doped MgB2 Superconductor
Abstract
:1. Introduction
2. Mathematical Background and Computational Methodology
2.1. Mathematical Description of the Extreme Learning Machine Algorithm
2.2. Physical Description of the Dataset
2.3. Computational Methodology
3. Results and Discussion
3.1. ELM-Generated Empirical Relation for Determining Superconducting Critical Temperature of MgB2 Superconductors
3.2. Comparison of Performance of the Developed ELM-Based Models
3.3. Performance Superiority of the Developed ELM-Based Models over Nine Existing Models in the Literature
3.4. Investigating the Impurity Scattering Potential of Carbon-Encapsulated Amorphous Boron for MgB2 Superconducting Critical Temperature Enhancement Using Developed SINE-ELM-RTR Model
3.5. Effect of Experimental Conditions in Altering MgB2 Superconducting Critical Temperature Using Developed SINE-ELM-RTR Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
SINE-ELM-RTR | SIG-ELM-RRR | ||||||
---|---|---|---|---|---|---|---|
t | bt | n | bn | ||||
1 | 0.186101 | 0.985921 | −0.49138 | 1 | −0.94801 | 0.249588 | −6.6 × 1011 |
2 | 0.971086 | 0.887304 | −16.5318 | 2 | −0.85068 | 0.087805 | 1.8 × 1012 |
3 | −0.85746 | 0.839137 | 4.556608 | 3 | 0.51173 | 0.982904 | −7.3 × 1011 |
4 | −0.18748 | 0.344938 | −4.36868 | 4 | 0.741441 | 0.459048 | 5.65 × 1011 |
5 | −0.34283 | 0.886074 | −8.27201 | 5 | 0.687243 | 0.739619 | 2.18 × 1011 |
6 | 0.105085 | 0.688138 | −3.7579 | 6 | 0.077477 | 0.025293 | −3.5 × 1011 |
7 | 0.248612 | 0.321202 | 6.322497 | 7 | 0.811055 | 0.659992 | −3.2 × 1011 |
8 | 0.046614 | 0.280338 | 3.564957 | 8 | 0.927674 | 0.071916 | 5.67 × 1011 |
9 | 0.005162 | 0.069928 | 12.33314 | 9 | 0.243973 | 0.382567 | −4.1 × 1011 |
10 | 0.657037 | 0.771272 | −7.26767 | 10 | 0.346665 | 0.499726 | −6.9 × 1011 |
11 | 0.760515 | 0.665401 | −7.71525 | 11 | 0.807224 | 0.369837 | −2.4 × 1011 |
12 | −0.55834 | 0.844292 | 3.977303 | 12 | 0.550768 | 0.315007 | 1.16 × 1012 |
13 | 0.497978 | 0.028985 | 8.330593 | 13 | 0.760484 | 0.914151 | −3.2 × 1011 |
14 | −0.04159 | 0.176893 | −2.90072 | 14 | 0.198338 | 0.272855 | −2.5 × 1011 |
15 | −0.61813 | 0.795095 | 4.707716 | 15 | −0.34972 | 0.217214 | 1.91 × 1011 |
16 | −0.79902 | 0.201458 | −14.9644 | 16 | −0.2145 | 0.97928 | −2.9 × 1011 |
17 | −0.2869 | 0.047778 | −7.45418 | 17 | −0.54683 | 0.416977 | 4.21 × 1011 |
18 | −0.86861 | 0.774912 | −1.48456 | 18 | −0.97811 | 0.62296 | 8.03 × 1010 |
19 | 0.282657 | 0.047952 | 7.512496 | 19 | −0.97086 | 0.908884 | −7 × 1010 |
20 | −0.57798 | 0.571814 | −5.84116 | 20 | 0.65959 | 0.709022 | 3.69 × 1011 |
21 | 0.205688 | 0.978185 | 10.38625 | 21 | −0.32761 | 0.420318 | −3.9 × 1011 |
22 | −0.39894 | 0.187222 | 21.83146 | 22 | 0.249901 | 0.875519 | −5 × 1011 |
23 | −0.56649 | 0.465004 | 2.970312 | 23 | 0.116835 | 0.790609 | −1.5 × 1011 |
24 | 0.240202 | 0.531042 | −12.5355 | 24 | −0.16132 | 0.882571 | −2.4 × 1011 |
25 | −0.51533 | 0.059517 | −5.80235 | 25 | −0.41991 | 0.778119 | −3.3 × 1011 |
26 | 0.79005 | 0.254225 | 0.75258 | 26 | −0.14931 | 0.812305 | −5.5 × 1010 |
27 | −0.51749 | 0.87309 | −12.6099 | 27 | −0.04007 | 0.936845 | 5.14 × 1011 |
28 | −0.88805 | 0.928452 | 2.058698 | 28 | 0.738756 | 0.227 | 1.25 × 1011 |
29 | −0.54559 | 0.031534 | −3.15246 | ||||
30 | −0.22413 | 0.706568 | 5.20531 | ||||
31 | −0.19999 | 0.884873 | 2.955585 | ||||
32 | −0.22367 | 0.36999 | 12.04491 | ||||
33 | 0.008046 | 0.677772 | 22.83283 | ||||
34 | −0.48827 | 0.537313 | −9.23591 | ||||
35 | 0.226645 | 0.782182 | −22.1123 | ||||
36 | −0.11027 | 0.824145 | 5.289399 | ||||
37 | 0.667544 | 0.717049 | −6.7686 | ||||
38 | 0.209168 | 0.415207 | 2.415386 | ||||
39 | 0.441331 | 0.278097 | −19.9039 | ||||
40 | −0.19808 | 0.116406 | −5.2194 |
SINE-ELM-LP | ||||
---|---|---|---|---|
j | bj | |||
1 | −0.4997 | 0.652607 | 0.743911 | −4.2 × 1010 |
2 | −0.67766 | 0.467709 | 0.090015 | −2.1 × 1010 |
3 | −0.86377 | 0.954054 | 0.164275 | −1.2 × 1011 |
4 | 0.683079 | −0.79966 | 0.472316 | −1.7 × 1011 |
5 | −0.00979 | −0.32342 | 0.600756 | 1.83 × 1011 |
6 | 0.841091 | −0.27679 | 0.188896 | −4.2 × 1010 |
7 | 0.101029 | −0.48301 | 0.927077 | 2.5 × 1010 |
8 | −0.34339 | 0.011686 | 0.639909 | 1.97 × 1011 |
9 | 0.702912 | −0.70551 | 0.210308 | −3.2 × 1011 |
10 | −0.02017 | −0.14905 | 0.099793 | 1.24 × 1011 |
11 | −0.61274 | 0.21401 | 0.978095 | −2 × 1011 |
12 | 0.018972 | 0.200443 | 0.963636 | 8.56 × 1010 |
13 | −0.0354 | 0.145625 | 0.326246 | −3.1 × 1010 |
14 | 0.855968 | −0.95176 | 0.862211 | 5.14 × 1011 |
15 | 0.846998 | 0.108338 | 0.276779 | −3.5 × 1011 |
16 | −0.52748 | −0.98937 | 0.660844 | 3.83 × 1011 |
17 | 0.03233 | −0.8782 | 0.106834 | −6.5 × 1010 |
18 | 0.724542 | −0.71074 | 0.628271 | −3 × 1011 |
19 | 0.807988 | −0.17671 | 0.572399 | −4.3 × 1011 |
20 | −0.85738 | −0.14512 | 0.210892 | 2.33 × 1011 |
21 | −0.00234 | −0.99127 | 0.284927 | −6.8 × 1011 |
22 | 0.908775 | −0.38413 | 0.407496 | −1.4 × 1010 |
23 | −0.47597 | −0.33637 | 0.810187 | −8.9 × 1010 |
24 | 0.762863 | −0.73716 | 0.770142 | −2.7 × 1011 |
25 | 0.981362 | 0.975124 | 0.705181 | 8.28 × 1010 |
26 | −0.99383 | 0.542196 | 0.9007 | −1.2 × 1010 |
27 | 0.092747 | −0.49115 | 0.275874 | 5.07 × 1010 |
28 | −0.57273 | 0.184956 | 0.167006 | −1.2 × 1011 |
29 | −0.65152 | −0.5996 | 0.550787 | 9.05 × 1010 |
30 | 0.282282 | −0.33706 | 0.817289 | −6.7 × 1010 |
31 | −0.76051 | 0.798628 | 0.193159 | 2.29 × 1011 |
32 | −0.6003 | 0.624115 | 0.041467 | 2.72 × 1011 |
33 | −0.1782 | 0.644477 | 0.753259 | −2.2 × 1011 |
34 | −0.10475 | −0.22332 | 0.958517 | 3.11 × 1011 |
35 | 0.378573 | 0.021686 | 0.81174 | 1.8 × 1011 |
36 | 0.545292 | −0.78463 | 0.507292 | −1.1 × 1011 |
37 | −0.58192 | 0.72754 | 0.874458 | −7 × 1010 |
38 | 0.191821 | 0.419286 | 0.676789 | 3.14 × 1011 |
39 | 0.477935 | 0.678581 | 0.459807 | −1.1 × 1010 |
40 | 0.180476 | −0.80014 | 0.417125 | 1.56 × 1011 |
41 | 0.901989 | −0.443 | 0.943964 | −9 × 1010 |
42 | −0.78219 | −0.30558 | 0.137807 | −8.4 × 1010 |
43 | 0.935107 | 0.931112 | 0.847502 | 2.8 × 1010 |
44 | 0.057323 | 0.670175 | 0.885394 | −2.5 × 1010 |
45 | −0.93104 | 0.655237 | 0.629661 | 3.97 × 1011 |
46 | −0.8676 | 0.348332 | 0.991742 | −5.8 × 1011 |
47 | −0.91624 | −0.91311 | 0.483752 | −1.6 × 1011 |
48 | −0.39467 | 0.574348 | 0.347083 | 6.17 × 1010 |
49 | −0.31988 | 0.892922 | 0.175956 | 2.04 × 1011 |
50 | −0.18228 | −0.92657 | 0.599345 | 2.24 × 1011 |
51 | −0.92256 | −0.49886 | 0.003855 | −5.2 × 1010 |
52 | 0.766784 | −0.86108 | 0.899305 | 1.49 × 1010 |
53 | −0.54562 | 0.228554 | 0.987931 | −6.4 × 1010 |
54 | 0.243102 | −0.56612 | 0.796928 | −1.5 × 1011 |
55 | 0.405998 | 0.635474 | 0.872865 | 7.19 × 1010 |
56 | 0.962473 | 0.683905 | 0.792791 | −1 × 1012 |
57 | 0.114881 | 0.830181 | 0.518729 | −4.9 × 1010 |
58 | 0.561707 | −0.87433 | 0.08746 | 1.23 × 1011 |
59 | −0.72095 | −0.97267 | 0.55657 | −6.1 × 1011 |
60 | 0.975459 | 0.320788 | 0.312556 | 5.91 × 1011 |
61 | 0.542332 | 0.052646 | 0.124194 | 9.85 × 1011 |
62 | −0.08299 | −0.50068 | 0.947863 | 1.42 × 1011 |
63 | −0.37536 | −0.7719 | 0.065324 | 3.16 × 1011 |
64 | 0.36288 | −0.1862 | 0.901494 | 3.36 × 1010 |
65 | 0.545377 | 0.564987 | 0.922426 | 8.39 × 1010 |
66 | −0.57065 | 0.609115 | 0.698265 | 1.11 × 1011 |
67 | 0.237133 | −0.65181 | 0.083918 | 8.69 × 1010 |
68 | −0.07771 | 0.330392 | 0.379303 | −1.6 × 1010 |
References
- Grivel, J.-C. Influence of iridium doping in MgB2 superconducting wires. Phys. C Supercond. 2018, 547, 7–15. [Google Scholar] [CrossRef] [Green Version]
- De Silva, K.S.B.; Xu., X.; Wang, X.L.; Wexler, D.; Attard, D.; Xiang, F.; Dou, S.X. A significant improvement in the superconducting properties of MgB2 by co-doping with graphene and nano-SiC. Scr. Mater. 2012, 67, 802–805. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.; Jang, S.; Hwang, S.; Choi, J.; Joo, J.; Kang, W.; Kim, C. Effects of the sintering temperature and doping of C60 and SiC on the critical properties of MgB2. Phys. C Supercond. 2008, 468, 1829–1832. [Google Scholar] [CrossRef]
- Zhang, S.; Deng, C.-Y.; Wang, X.; Wu, Y.-P.; Fu, Y.; Fu, X.-H. Superconducting MgB2 film prepared by chemical vapor deposition at atmospheric pressure of N2. Thin Solid Films 2015, 584, 300–304. [Google Scholar] [CrossRef]
- Lavarone, M.; Di Capua, R.; Koshelev, A.E.; Kwok, W.K.; Chiarella, F.; Vaglio, R.; Kang, W.N.; Choi, E.M.; Kim, H.J.; Lee, S.I.; et al. Effect of disorder in MgB2 thin films. Phys. Rev. B 2005, 71, 214502. [Google Scholar] [CrossRef] [Green Version]
- Owolabi, T.O.; Akande, K.O.; Olatunji, S.O. Estimation of Superconducting Transition Temperature TC for Superconductors of the Doped MgB2 System from the Crystal Lattice Parameters Using Support Vector Regression. J. Supercond. Nov. Magn. 2014, 28, 75–81. [Google Scholar] [CrossRef]
- Kaushik, S.; Kumar, R.; Mishra, P.; Giencke, J.; Kim, D.; Eom, C.; Patnaik, S. Modification of intergrain connectivity, upper critical field anisotropy and critical current density in ion irradiated MgB2 films. Phys. C Supercond. 2006, 442, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Eisterer, M. Magnetic properties and critical currents of MgB2. Supercond. Sci. Technol. 2007, 20, R47–R73. [Google Scholar] [CrossRef]
- Tsuda, S.; Yokoya, T.; Shin, S.; Takano, Y.; Kito, H.; Matsushita, A.; Yin, F.; Itoh, J.; Harima, H. The Fermi surface and sheet-dependent superconducting gap of MgB2. Phys. C Supercond. 2004, 412-414, 36–40. [Google Scholar] [CrossRef]
- Barua, S.; Al Hossain, M.S.; Ma, Z.; Patel, D.; Mustapic, M.; Somer, M.; Acar, S.; Kokal, I.; Morawski, A.; Cetner, T.; et al. Superior critical current density obtained in MgB2 bulks through low-cost carbon-encapsulated boron powder. Scr. Mater. 2015, 104, 37–40. [Google Scholar] [CrossRef]
- Ranot, M.; Jang, S.H.; Shinde, K.P.; Sinha, B.B.; Bhardwaj, A.; Oh, Y.-S.; Kang, S.-H.; Chung, K. Solution-processed nanometers thick amorphous carbon-coated boron as an efficient precursor for high-field performance of MgB2. J. Alloy. Compd. 2017, 724, 507–514. [Google Scholar] [CrossRef]
- Ojha, N.; Malik, V.; Bernhard, C.; Varma, G. Enhanced superconducting properties of Eu2O3-doped MgB2. Phys. C Supercond. 2009, 469, 846–851. [Google Scholar] [CrossRef]
- Tripathi, D.; Dey, T. Effect of (Bi, Pb)-2223 addition on thermal transport of superconducting MgB2 pellets. J. Alloy. Compd. 2015, 618, 56–63. [Google Scholar] [CrossRef]
- Hossain, M.S.A.; Motaman, A.; Cicek, O.; Agil, H.; Ertekin, E.; Gencer, A.; Wang, X.L.; Dou, S.X. The effects of annealing temperature on the in-field Jc and surface pinning in silicone oil doped MgB2 bulks and wires. Cryogenics 2012, 52, 755–759. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, D.; Moharana, S.; Dey, T. The role of starch doping on the superconducting properties of MgB2. Cryogenics 2014, 63, 85–93. [Google Scholar] [CrossRef]
- Hosni, H.; Vulpiani, A. Forecasting in Light of Big Data. Philos. Technol. 2017, 31, 557–569. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Yan, C.; Qi, J.; Ma, J.; Tang, H.; Zhang, T.; Li, H. Determination of carbon and sulfur content in coal by laser induced breakdown spectroscopy combined with kernel-based extreme learning machine. Chemom. Intell. Lab. Syst. 2017, 167, 226–231. [Google Scholar] [CrossRef]
- Owolabi, T.O.; Gondal, M.A. Quantitative analysis of LIBS spectra using hybrid chemometric models through fusion of extreme learning machines and support vector regression. J. Intell. Fuzzy Syst. 2018, 35, 6277–6286. [Google Scholar] [CrossRef]
- Oyeneyin, O.E.; Obadawo, B.S.; Olanrewaju, A.A.; Owolabi, T.O.; Gbadamosi, F.A.; Ipinloju, N.; Modamori, H.O. Predicting the bioactivity of 2-alkoxycarbonylallyl esters as potential antiproliferative agents against pancreatic cancer (MiaPaCa-2) cell lines: GFA-based QSAR and ELM-based models with molecular docking. J. Genet. Eng. Biotechnol. 2021, 19, 1–15. [Google Scholar] [CrossRef]
- Wang, Y.; Li, R.; Chen, Y. Accurate elemental analysis of alloy samples with high repetition rate laser-ablation spark-induced breakdown spectroscopy coupled with particle swarm optimization-extreme learning machine. Spectrochim. Acta Part B At. Spectrosc. 2021, 177, 106077. [Google Scholar] [CrossRef]
- Chen, H.; Tan, C.; Lin, Z. Molecular and Biomolecular Spectroscopy Ensemble of extreme learning machines for multivariate calibration of near-infrared spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 229, 117982. [Google Scholar] [CrossRef] [PubMed]
- Wen, X. Modeling and performance evaluation of wind turbine based on ant colony optimization-extreme learning machine. Appl. Soft Comput. 2020, 94, 106476. [Google Scholar] [CrossRef]
- Owolabi, T.O.; Rahman, M.A.A. Prediction of Band Gap Energy of Doped Graphitic Carbon Nitride Using Genetic Algorithm-Based Support Vector Regression and Extreme Learning Machine. Symmetry 2021, 13, 411. [Google Scholar] [CrossRef]
- Surazhevsky, I.; Demin, V.; Ilyasov, A.; Emelyanov, A.; Nikiruy, K.; Rylkov, V.; Shchanikov, S.; Bordanov, I.; Gerasimova, S.; Guseinov, D.; et al. Noise-assisted persistence and recovery of memory state in a memristive spiking neuromorphic network. Chaos Solitons Fractals 2021, 146, 110890. [Google Scholar] [CrossRef]
- Denaro, G.; Valenti, D.; Spagnolo, B.; Basilone, G.; Mazzola, S.; Zgozi, S.W.; Aronica, S.; Bonanno, A. Dynamics of Two Picophytoplankton Groups in Mediterranean Sea: Analysis of the Deep Chlorophyll Maximum by a Stochastic Advection-Reaction-Diffusion Model. PLoS ONE 2013, 8, e66765. [Google Scholar] [CrossRef]
- Perez, E.; Maldonado, D.; Acal, C.; Ruiz-Castro, J.E.; Alonso, F.J.; Aguilera, A.M.; Jimenez-Molinos, F.; Wenger, C.; Roldan, J.B. Microelectronic Engineering Analysis of the statistics of device-to-device and cycle-to-cycle variability in TiN/Ti/Al:HfO2/TiN RRAMs. Microelectron. Eng. 2019, 214, 104–109. [Google Scholar] [CrossRef]
- Carollo, A.; Spagnolo, B.; Valenti, D. Uhlmann curvature in dissipative phase transitions. Sci. Rep. 2018, 8, 9852. [Google Scholar] [CrossRef] [Green Version]
- Mikhaylov, A.; Pimashkin, A.; Pigareva, Y.; Gerasimova, S.; Gryaznov, E.; Shchanikov, S.; Zuev, A.; Talanov, M.; Lavrov, I.; Demin, V.; et al. Neurohybrid Memristive CMOS-Integrated Systems for Biosensors and Neuroprosthetics. Front. Neurosci. 2020, 14, 358. [Google Scholar] [CrossRef]
- Liu, Z.F.; Li, L.L.; Tseng, M.L.; Lim, M.K. Prediction short-term photovoltaic power using improved chicken swarm optimizer—Extreme learning machine model. J. Clean. Prod. 2020, 248, 119272. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Han, Y. Production capacity prediction of hydropower industries for energy optimization: Evidence based on novel extreme learning machine integrating Monte Carlo. J. Clean. Prod. 2020, 272, 122824. [Google Scholar] [CrossRef]
- Lee, S.; Masui, T.; Yamamoto, A.; Uchiyama, H.; Tajima, S. Carbon-substituted MgB2 single crystals. Phys. C Supercond. 2003, 397, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Das, S.; Bernhard, C.; Varma, G.D. Effect of graphene oxide doping on superconducting properties of bulk MgB2. Supercond. Sci. Technol. 2013, 26, 095008. [Google Scholar] [CrossRef] [Green Version]
- Ağıl, H.; Yetis, H.; Akdogan, M.; Altug, C.; Akturk, S.; Gencer, A. Fabrication and characterization of C15H12O2 doped MgB2 bulk superconductors. Cryogenics 2014, 63, 138–142. [Google Scholar] [CrossRef]
- Hušeková, K.; Hušek, I.; Kováč, P.; Kulich, M.; Dobročka, E.; Štrbík, V. Properties of MgB2 superconductor chemically treated by acetic acid. Phys. C Supercond. 2010, 470, 331–335. [Google Scholar] [CrossRef]
- Das, S.; Bernhard, C.; Varma, G. Enhanced superconducting properties of rare-earth oxides and graphene oxide added MgB2. Phys. C Supercond. 2014, 505, 32–38. [Google Scholar] [CrossRef]
- Sinha, B.; Kadam, M.; Mudgel, M.; Awana, V.; Kishan, H.; Pawar, S. Synthesis and characterization of excess magnesium MgB2 superconductor under inert carbon environment. Phys. C Supercond. 2010, 470, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Barua, S.; Patel, D.; Alzayed, N.; Shahabuddin, M.; Parakkandy, J.M.; Shah, M.S.; Ma, Z.; Mustapić, M.; Al Hossain, S.; Kim, J.H. Correlation between in-field Jc enhancement and grain connectivity in co-doped MgB2 superconductor. Mater. Lett. 2015, 139, 333–335. [Google Scholar] [CrossRef]
- Grivel, J.-C. Critical current density improvements in MgB2 superconducting bulk samples by K2CO3 additions. Phys. C Supercond. 2018, 550, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Grivel, J.-C. Attempts at doping indium in MgB2. Phys. C Supercond. 2016, 531, 67–71. [Google Scholar] [CrossRef]
- Das, S.; Bernhard, C.; Varma, G.D. Effect of combined addition of graphene oxide and citric acid on superconducting properties of MgB2. Phys. C Supercond. Appl. 2015, 509, 49–55. [Google Scholar] [CrossRef]
- Tripathi, D.; Dey, T.K. Analysis of the levitation force of pure and starch/polystyrene/MWCNT added bulk MgB2 superconductors using frozen image model under zero field cooling condition. Cryogenics 2016, 75, 13–18. [Google Scholar] [CrossRef]
- Shah, M.S.; Shahabuddin, M.; Parakkandy, J.M.; Qaid, S.; Alzayed, N.S. Enhanced critical current density in undoped MgB2 prepared by in situ/ex situ combination technique. Solid State Commun. 2015, 218, 31–34. [Google Scholar] [CrossRef]
- Grivel, J.-C.; Rubešová, K. Increase of the critical current density of MgB2 superconducting bulk samples by means of methylene blue dye additions. Phys. C Supercond. 2019, 565, 1353506. [Google Scholar] [CrossRef]
- Zhao, Q.; Jiao, C.; Zhu, Z.; Chen, Z.; Cui, S. In-situ synthesis of carbon capsulated Ni nanoparticles and their cooperative doping effects on superconducting properties of MgB2. J. Alloy. Compd. 2016, 682, 441–446. [Google Scholar] [CrossRef]
- Grivel, J.-C.; Burdusel, M. Preparation and characterization of Sc doped MgB2 wires. Phys. C Supercond. 2016, 528, 65–72. [Google Scholar] [CrossRef]
- Gong, C.; Zhao, Q.; Lan, F.; Ping, X.; Zhang, P.; Liu, Y.; Hao, L. Effect of Ni doping on microstructure and superconductivity of MgB2 prepared by C-coated B powder. Phys. C Supercond. 2019, 566, 1353540. [Google Scholar] [CrossRef]
- Grivel, J.-C.; Holte, O. Preparation and characterisation of Ru doped MgB2. Phys. C Supercond. 2013, 495, 229–232. [Google Scholar] [CrossRef]
- Ansari, I.A. Study of ac-susceptibility for co-doped MgB2 superconductor with nano-Al2O3 and nano-C at low magnetic field. Intermetallics 2019, 106, 100–106. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, W.; Wang, Q.; Zhang, H.; Yu, Z.; Cheng, C.; Lei, M.; Zhao, Y. Superconducting properties of NaCl doped MgB2 bulks fabricated by hot pressed sintering. J. Alloy. Compd. 2019, 803, 742–747. [Google Scholar] [CrossRef]
- Cheng, F.; Liu, Y.; Ma, Z.; Li, H.; Shahriar Al Hossain, M. Superior critical current density obtained in Mg11B2 low activation superconductor by using reactive amorphous 11B and optimizing sintering temperature. J. Alloys Compd. 2015, 650, 508–513. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Zhang, H.; Zhang, X.; Tang, S.; Ma, Y.; Oguro, H.; Awaji, S.; Watanabe, K. Effects of three different homemade nanocarbons doping on the superconducting properties of MgB2 tapes. Phys. C Supercond. 2015, 508, 49–55. [Google Scholar] [CrossRef]
- Ansari, I.A.; Rao, C. Estimation of transition temperature Tc for doped MgB2 superconductors by empirical models. Mater. Today Proc. 2021, 45, 4417–4420. [Google Scholar] [CrossRef]
- Olatunji, S.O.; Owolabi, T.O. Modeling superconducting transition temperature of doped MgB2 superconductor from structural distortion and ambient temperature resistivity measurement using hybrid intelligent approach. Comput. Mater. Sci. 2021, 192, 110392. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X. Superconductivity and its applications Predicting doped MgB2 superconductor critical temperature from lattice parameters using Gaussian process regression. Phys. C Supercond. Appl. 2020, 573, 1353633. [Google Scholar] [CrossRef]
- Owolabi, T.O.; Akande, K.O.; Olatunji, S.O. Application of computational intelligence technique for estimating superconducting transition temperature of YBCO superconductors. Appl. Soft Comput. J. 2016, 43, 143–149. [Google Scholar] [CrossRef]
- Peng, J.; Cai, Q.; Cheng, F.; Ma, Z.; Li, C.; Xin, Y.; Liu, Y. Enhancement of critical current density by a "MgB2-MgB4" reversible reaction in self-sintered ex-situ MgB2 bulks. J. Alloys Compd. 2017, 694, 24–29. [Google Scholar] [CrossRef]
MAE | % Improvement of SINE-ELM-RTR | % Improvement of SINE-ELM-LP | % Improvement of SIG-ELM-RRR | |
---|---|---|---|---|
Intikhab et al. (2021)_linear [53] | 3.1764 | 99.0606 | 76.97842 | 69.6459 |
Intikhab et al. (2021)_Exponential [53] | 2.709 | 98.89851 | 73.00637 | 64.40872 |
Intikhab et al. (2021)_Quadratic [53] | 2.0817 | 98.56659 | 64.87211 | 53.68364 |
HGA-SVR-RTR (2021) [54] | 0.0704 | 57.61471 | ||
HGA-SVR-RRR (2021) [54] | 0.2463 | 87.885 | ||
HGA-SVR-CLD (2021) [54] | 0.6097 | 95.10591 | ||
GRP-prediction (2020) [55] | 0.28 | 89.34313 | ||
STTE (2016) [56] | 0.279 | 89.30493 | ||
STTE (2014) [6] | 1.00 | 97.01608 | 26.87427 | 3.583232 |
SIG-ELM-RRR (this work) | 0.964168 | 96.90518 | 24.15662 | |
SINE-ELM-LP (this work) | 0.731257 | 95.91946 | ||
SINE-ELM-RTR (this work) | 0.029839 |
MAE | % Improvement of SINE-ELM-RTR | % Improvement of SINE-ELM-LP | % Improvement of SIG-ELM-RRR | |
---|---|---|---|---|
Intikhab et al. (2021)_linear [53] | 3.1764 | 99.0606 | 76.97842 | 69.6459 |
Intikhab et al. (2021)_Exponential [53] | 2.709 | 98.89851 | 73.00637 | 64.40872 |
Intikhab et al. (2021)_Quadratic [53] | 2.0817 | 98.56659 | 64.87211 | 53.68364 |
HGA-SVR-RTR (2021) [54] | 0.0704 | 57.61471 | ||
HGA-SVR-RRR (2021) [54] | 0.2463 | 87.885 | ||
HGA-SVR-CLD (2021) [54] | 0.6097 | 95.10591 | ||
GRP-prediction (2020) [55] | 0.28 | 89.34313 | ||
STTE (2016) [56] | 0.279 | 89.30493 | ||
STTE (2014) [6] | 1.00 | 97.01608 | 26.87427 | 3.583232 |
SIG-ELM-RRR (this work) | 0.964168 | 96.90518 | 24.15662 | |
SINE-ELM-LP (this work) | 0.731257 | 95.91946 | ||
SINE-ELM-RTR (this work) | 0.029839 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olatunji, S.O.; Owolabi, T. Extreme Learning Machine Approach to Modeling the Superconducting Critical Temperature of Doped MgB2 Superconductor. Crystals 2022, 12, 228. https://doi.org/10.3390/cryst12020228
Olatunji SO, Owolabi T. Extreme Learning Machine Approach to Modeling the Superconducting Critical Temperature of Doped MgB2 Superconductor. Crystals. 2022; 12(2):228. https://doi.org/10.3390/cryst12020228
Chicago/Turabian StyleOlatunji, Sunday Olusanya, and Taoreed Owolabi. 2022. "Extreme Learning Machine Approach to Modeling the Superconducting Critical Temperature of Doped MgB2 Superconductor" Crystals 12, no. 2: 228. https://doi.org/10.3390/cryst12020228
APA StyleOlatunji, S. O., & Owolabi, T. (2022). Extreme Learning Machine Approach to Modeling the Superconducting Critical Temperature of Doped MgB2 Superconductor. Crystals, 12(2), 228. https://doi.org/10.3390/cryst12020228