In Silico Investigation of Some Compounds from the N-Butanol Extract of Centaurea tougourensis Boiss. & Reut.
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Plant Material
2.2. Preparation of Plant Extract
2.3. In Silico Study
2.3.1. Determination of Canonical SMILES
2.3.2. Physicochemical Properties
2.3.3. ADMET Profile
2.3.4. Pharmacological Properties
2.3.5. Cytotoxicity Prediction
2.3.6. Gene Expression Profiles
2.3.7. Macromolecular Targets Prediction
3. Results and Discussion
3.1. Canonical SMILES Generation
3.2. Physicochemical Properties
3.3. ADMET Profile
3.4. Pharmacological Properties
3.5. Cytotoxicity Prediction
3.6. Gene Expression Profiles
3.7. Macromolecular Targets Prediction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.; Tian, S.; Li, Y.; Fang, Q.; Tan, R.; Pan, Y.; Huang, C.; Xu, Y.; Gao, X. Modern deep learning in bioinformatics. J. Mol. Cell Biol. 2020, 12, 823–827. [Google Scholar] [CrossRef] [PubMed]
- Echigoya, Y.; Mouly, V.; Garcia, L.; Yokota, T.; Duddy, W. In silico screening based on predictive algorithms as a design tool for exon skipping oligonucleotides in Duchenne muscular dystrophy. PLoS ONE 2015, 10, e0120058. [Google Scholar]
- Zhang, X.; Liu, T.; Fan, X.; Ai, N. In silico modeling on ADME properties of natural products: Classification models for blood-brain barrier permeability, its application to traditional Chinese medicine and in vitro experimental validation. J. Mol. Graph. 2017, 75, 347–354. [Google Scholar] [CrossRef]
- Inui, T.; Kobayashi, S.; Haginoya, K. Predicting epileptic encephalopathy using mutation site analysis and in silico algorithms. Epilepsy Behav. 2020, 109, 107085–107086. [Google Scholar] [CrossRef]
- Falahi, S.; Karaji, A.G.; Koohyanizadeh, F.; Rezaiemanesh, A.; Salari, F. A comprehensive in silico analysis of the functional and structural impact of single nucleotide polymorphisms (SNPs) in the human IL-33 gene. Comput. Biol. Chem. 2021, 94, 107560. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yuan, B.; Lu, Y.; Zhao, X.; Shen, C.; Ji, J.; Lin, L.; Xu, J.; Xie, T.; Shan, J. In-silico-library-based method enables rapid and comprehensive annotation of cardiolipins and cardiolipin oxidation products using high resolution tandem mass spectrometer. Anal. Chim. Acta 2021, 1180, 338879–338888. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [Green Version]
- Petrovska, B.B. Historical review of medicinal plants’ usage. Pharmacogn. Rev. 2012, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Dzhambov, A.M.; Lercher, P.; Browning, M.; Stoyanov, D.; Petrova, N.; Novakov, S.; Dimitrova, D.D. Does greenery experienced indoors and outdoors provide an escape and support mental health during the COVID-19 quarantine? Environ. Res. 2021, 196, 110420–110431. [Google Scholar] [CrossRef]
- Yeung, W.F.; Chung, K.F.; Poon, M.M.; Ho, F.Y.; Zhang, S.P.; Zhang, Z.J.; Ziea, E.T.; Wong, V.T. Chinese herbal medicine for insomnia: A systematic review of randomized controlled trials. Sleep Med. Rev. 2012, 16, 497–507. [Google Scholar] [CrossRef]
- Köse, Y.B.; İşcan, G.; Göger, F.; Akalın, G.; Demirci, B.; Başer, K.H. Chemical Composition and Biological Activity of Centaurea baseri: New Species from Turkey. Chem. Biodivers. 2016, 13, 1369–1379. [Google Scholar] [CrossRef] [PubMed]
- Chuclá, M.T.; Lamela, M.; Gato, A.; Cadavid, I. Centaurea corcubionensis: A study of its hypoglycemic activity in rats. Planta Med. 1988, 54, 107–109. [Google Scholar] [CrossRef] [PubMed]
- Koca, U.; Süntar, I.P.; Keles, H.; Yesilada, E.; Akkol, E.K. In vivo anti-inflammatory and wound healing activities of Centaurea iberica Trev. ex Spreng. J. Ethnopharmacol. 2009, 126, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Csupor, D.; Peták, Z.; Hohmann, J. Medicinal perspective of Hungarian Centaurea species in the light of scientific evidence. Acta Pharm. Hung. 2011, 81, 63–75. [Google Scholar]
- Naeim, H.; El-Hawiet, A.; Abdel Rahman, R.A.; Hussein, A.; El Demellawy, M.A.; Embaby, A.M. Antibacterial activi-ty of Centaurea pumilio L. root and aerial part extracts against some multidrug resistant bacteria. BMC Complement. Med. Ther. 2020, 20, 79. [Google Scholar] [CrossRef] [Green Version]
- Dimkić, I.; Petrović, M.; Gavrilović, M.; Gašić, U.; Ristivojević, P.; Stanković, S.; Janaćković, P. New perspectives of purple starthistle (Centaurea calcitrapa) leaf extracts: Phytochemical analysis, cytotoxicity and antimicrobial activity. AMB Express 2020, 10, 1–21. [Google Scholar] [CrossRef]
- Nasr, F.A.; Shahat, A.A.; Alqahtani, A.S.; Ahmed, M.Z.; Qamar, W.; Al-Mishari, A.A.; Almoqbil, A.N. Centaurea bruguierana inhibits cell proliferation, causes cell cycle arrest, and induces apoptosis in human MCF-7 breast carcinoma cells. Mol. Biol. Rep. 2020, 47, 6043–6051. [Google Scholar] [CrossRef]
- Khanavi, M.; Rajabi, A.; Behzad, M.; Hadjiakhoondi, A.; Vatandoost, H.; Abaee, M.R. Larvicidal Activity of Centaurea bruguierana ssp. belangerana Against Anopheles stephensi Larvae. Iran. J. Pharm. Sci. 2011, 10, 829–833. [Google Scholar]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011, 3, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 2019, 35, 1067–1069. [Google Scholar] [CrossRef] [PubMed]
- Lagunin, A.; Stepanchikova, A.; Filimonov, D.; Poroikov, V. PASS: Prediction of activity spectra for biologically active substances. Bioinformatics 2000, 16, 747–748. [Google Scholar] [CrossRef] [PubMed]
- Lagunin, A.A.; Dubovskaja, V.I.; Rudik, A.V.; Pogodin, P.V.; Druzhilovskiy, D.S.; Gloriozova, T.A.; Filimonov, D.A.; Sastry, N.G.; Poroikov, V.V. CLC-Pred: A freely available web-service for in silico prediction of human cell line cytotoxicity for drug-like compounds. PLoS ONE 2018, 13, e0191838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagunin, A.; Ivanov, S.; Rudik, A.; Filimonov, D.; Poroikov, V. DIGEP-Pred: Web service for in silico prediction of drug-induced gene expression profiles based on structural formula. Bioinformatics 2013, 29, 2062–2063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaye, S.; Lokki, A.I.; Hanttu, A.; Nissilä, E.; Heinonen, S.; Hakkarainen, A.; Lundbom, J.; Lundbom, N.; Saarinen, L.; Tynninen, O.; et al. Upregulation of Early and Downregulation of Terminal Pathway Complement Genes in Subcutaneous Adipose Tissue and Adipocytes in Acquired Obesity. Front. Immunol. 2017, 8, 545. [Google Scholar] [CrossRef] [Green Version]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef] [Green Version]
- Tamaian, R.; Moţ, A.; Silaghi-Dumitrescu, R.; Ionuţ, I.; Stana, A.; Oniga, O.; Nastasă, C.; Benedec, D.; Tiperciuc, B. Study of the Relationships between the Structure, Lipophilicity and Biological Activity of Some Thiazolyl-carbonyl-thiosemicarbazides and Thiazolyl-azoles. Molecules 2015, 20, 22188–22201. [Google Scholar] [CrossRef]
- Kim, M.T.; Sedykh, A.; Chakravarti, S.K.; Saiakhov, R.D.; Zhu, H. Critical evaluation of human oral bioavailability for pharmaceutical drugs by using various cheminformatics approaches. Pharm. Res. 2014, 31, 1002–1014. [Google Scholar] [CrossRef]
- Hughes, J.P.; Rees, S.; Kalindjian, S.B.; Philpott, K.L. Principles of early drug discovery. Br. J. Pharmacol. 2011, 162, 1239–1249. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, R.K. Drug delivery systems, CNS protection, and the blood brain barrier. Biomed Res. Int. 2014, 2014, 869269. [Google Scholar] [CrossRef] [Green Version]
- Chu, S.H.; Lee, Y.J.; Lee, E.S.; Geng, Y.; Wang, X.S.; Cleeland, C.S. Current use of drugs affecting the central nervous system for chemotherapy-induced peripheral neuropathy in cancer patients: A systematic review. Support. Care Cancer 2015, 23, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.L. P-glycoprotein Inhibition for Optimal Drug Delivery. Drug Target Insights 2013, 7, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Zolkipli-Cunningham, Z.; Falk, M.J. Clinical effects of chemical exposures on mitochondrial function. Toxicology 2017, 391, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Naven, R.T.; Swiss, R.; Klug-McLeod, J.; Will, Y.; Greene, N. The development of structure-activity relationships for mitochondrial dysfunction: Uncoupling of oxidative phosphorylation. Toxicol. Sci. 2013, 131, 271–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manikandan, P.; Nagini, S. Cytochrome P450 Structure, Function and Clinical Significance: A Review. Curr. Drug Targets 2018, 19, 38–54. [Google Scholar] [CrossRef] [PubMed]
- Haji-Ali-Nili, N.; Khoshzaban, F.; Karimi, M.; Roja, R.; Ashrafi, E.; Ghaffari, R.; Ghobadi, A.; Jabarvand Behrouz, M. Effect of a Natural Eye Drop, Made of Plantago Ovata Mucilage on Improvement of Dry Eye Symptoms: A Randomized, Double-blind Clinical Trial. Iran. J. Pharm. Res. 2019, 18, 1602–1611. [Google Scholar]
- Madejska, A.; Michalski, M.; Osek, J. Marine Tetrodotoxin as a Risk for Human Health. J. Vet. Res. 2019, 63, 579–586. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Tsutsui, H.; Yamawaki, N.; Morii, Y.; Nishihara, G.N.; Itoi, S.; Arakawa, O.; Takatani, T. Geographic Variations in the Toxin Profile of the Xanthid Crab Zosimus aeneus in a Single Reef on Ishigaki Island, Okinawa, Japan. Mar. Drugs 2021, 19, 670. [Google Scholar] [CrossRef]
- Sakkiah, S.; Guo, W.; Pan, B.; Kusko, R.; Tong, W.; Hong, H. Computational prediction models for assessing endocrine disrupting potential of chemicals. J. Environ. Sci. Health C: Toxicol. Carcinog. 2018, 36, 192–218. [Google Scholar] [CrossRef]
- Yu, E.; Xu, Y.; Shi, Y.; Yu, Q.; Liu, J.; Xu, L. Discovery of novel natural compound inhibitors targeting estrogen receptor α by an integrated virtual screening strategy. J. Mol. Model. 2019, 25, 278–288. [Google Scholar] [CrossRef]
- Sykes, D.A.; Parry, C.; Reilly, J.; Wright, P.; Fairhurst, R.A.; Charlton, S.J. Observed drug-receptor association rates are governed by membrane affinity: The importance of establishing “micro-pharmacokinetic/pharmacodynamic relationships” at the β2-adrenoceptor. Mol. Pharmacol. 2014, 85, 608–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm. 2012, 2012, 195727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, H.D.; Trevaskis, N.L.; Charman, S.A.; Shanker, R.M.; Charman, W.N.; Pouton, C.W.; Porter, C.J. Strategies to address low drug solubility in discovery and development. Pharmacol. Rev. 2013, 65, 315–499. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, P.; Cox, R.J.; Grime, K. Plasma Protein Binding as an Optimizable Parameter for Acidic Drugs. Drug Metab. Dispos. 2019, 47, 865–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.Y.; Yang, J.; Yin, X.X.; Yang, S.P.; Zhu, Y.G. Arsenate toxicity and stress responses in the freshwater ciliate Tetrahymena pyriformis. Eur. J. Protistol. 2012, 48, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Walum, E. Acute oral toxicity. Environ. Health Perspect. 1998, 106, 497–503. [Google Scholar] [PubMed]
- Druzhilovskiy, D.S.; Rudik, A.V.; Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Poroikov, V.V. Online resources for the prediction of biological activity of organic compounds. Russ. Chem. Bull. 2016, 65, 384–393. [Google Scholar] [CrossRef]
- Catterall, W.A. Voltage-gated calcium channels. Cold Spring Harb. Perspect. Biol. 2011, 3, a003947. [Google Scholar] [CrossRef]
- Suliman, N.A.; Mat Taib, C.N.; Mohd Moklas, M.A.; Adenan, M.I.; Hidayat Baharuldin, M.T.; Basir, R. Establishing Natural Nootropics: Recent Molecular Enhancement Influenced by Natural Nootropic. Evid.-Based Complement. Altern. Med. 2016, 2016, 4391375. [Google Scholar] [CrossRef] [Green Version]
- Patel, D.K.; Prasad, S.K.; Kumar, R.; Hemalatha, S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac. J. Trop. Biomed. 2012, 2, 320–330. [Google Scholar] [CrossRef] [Green Version]
- Bialecka-Florjanczyk, E.; Fabiszewska, A.U.; Krzyczkowska, J.; Kurylowicz, A. Synthetic and Natural Lipase Inhibitors. Mini-Rev. Med. Chem. 2018, 18, 672–683. [Google Scholar] [CrossRef] [PubMed]
- Farzaei, M.H.; Bahramsoltani, R.; Rahimi, R.; Abbasabadi, F.; Abdollahi, M. A Systematic Review of Plant-Derived Natural Compounds for Anxiety Disorders. Curr. Top. Med. Chem. 2016, 16, 1924–1942. [Google Scholar] [CrossRef] [PubMed]
- Sternitzke, N. The cardiovascular effect of akrinor, a circulatory analeptic with long-term effect. Z. Kreislaufforsch. 1965, 54, 10–18. [Google Scholar] [PubMed]
- Borer, J.S.; Sharma, A. Drug Therapy for Heart Valve Diseases. Circulation 2015, 132, 1038–1045. [Google Scholar] [CrossRef] [Green Version]
- Bensaad, M.S.; Dassamiour, S.; Hambaba, L.; Bensouici, C.; Haba, H. In vitro assessment of antioxidant, anti-inflammatory, neuroprotective and antimicrobial activities of Centaurea tougourensis Boiss. & Reut. J. Pharm. Pharmacogn. Res. 2021, 9, 790–802. [Google Scholar]
- Bensaad, M.S.; Dassamiour, S.; Hambaba, L.; Saidi, A.; Melakhsou, M.A.; Nouicer, F.; Baghiani, A.; Khennouf, S.; Kahoul, M.A.; Kadrine, N. In vivo investigation of antidiabetic, hepatoprotective, anti-inflammatory and antipyretic activities of Centaurea tougourensis Boiss. & Reut. J. Physiol. Pharmacol. 2021, 72, 439–449. [Google Scholar]
- Orlando, K.; Guo, W. Membrane organization and dynamics in cell polarity. Cold Spring Harb. Perspect. Biol. 2009, 1, a001321. [Google Scholar] [CrossRef]
- Lee, M.; Coban, C. Unforeseen pathologies caused by malaria. Int. Immunol. 2018, 30, 121–129. [Google Scholar] [CrossRef]
- Tiwary, B.K.; Bihani, S.; Kumar, A.; Chakraborty, R.; Ghosh, R. The in vitro cytotoxic activity of ethno-pharmacological important plants of Darjeeling district of West Bengal against different human cancer cell lines. BMC Complement. Med. Ther. 2015, 15, 22. [Google Scholar] [CrossRef] [Green Version]
- Rai, V.; Kumar, A.; Das, V.; Ghosh, S. Evaluation of chemical constituents and in vitro antimicrobial, antioxidant and cytotoxicity potential of rhizome of Astilbe rivularis (Bodho-okhati), an indigenous medicinal plant from Eastern Himalayan region of India. BMC Complement. Med. Ther. 2019, 19, 200. [Google Scholar] [CrossRef] [Green Version]
- Bensaad, M.S.; Dassamiour, S.; Hambaba, L.; Kahoul, M.A.; Benhoula, M. Evidence of anti-inflammatory and anti-ulcer properties of aerial parts of Centaurea tougourensis Boiss and Reut. Trop. J. Pharm. Res. 2021, 20, 1647–1654. [Google Scholar]
- Davis, L.E.; Shalin, S.C.; Tackett, A.J. Current state of melanoma diagnosis and treatment. Cancer Biol. Ther. 2019, 20, 1366–1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, M.; Holman, D.M.; Maguire-Eisen, M. Ultraviolet Radiation Exposure and Its Impact on Skin Cancer Risk. Semin. Oncol. Nurs. 2016, 32, 241–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bensaad, M.S.; Dassamiour, S.; Hambaba, L.; Bensouici, C.; Ouffroukh, K.; Kahoul, M.A. HPLC-DAD phenolics screening and in vitro investigation of haemostatic, antidiabetic, antioxidant and photoprotective properties of Centaurea tougourensis Boiss. & Reut. Herba Pol. 2021, 67, 16–31. [Google Scholar]
- Raetz, E.A.; Teachey, D.T. T-cell acute lymphoblastic leukemia. Hematol. Am. Soc. Hematol. Educ. Program 2016, 2016, 580–588. [Google Scholar] [CrossRef] [Green Version]
- Dinner, S.; Liedtke, M. Antibody-based therapies in patients with acute lymphoblastic leukemia. Hematol. Am. Soc. Hematol. Educ. Program 2018, 2018, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Dela Cruz, C.S.; Tanoue, L.T.; Matthay, R.A. Lung cancer: Epidemiology, etiology, and prevention. Clin. Chest Med. 2011, 32, 605–644. [Google Scholar] [CrossRef] [Green Version]
- Melosky, B.; Blais, N.; Cheema, P.; Couture, C.; Juergens, R.; Kamel-Reid, S.; Tsao, M.S.; Wheatley-Price, P.; Xu, Z.; Ionescu, D.N. Standardizing biomarker testing for Canadian patients with advanced lung cancer. Curr. Oncol. 2018, 25, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Bareschino, M.A.; Schettino, C.; Rossi, A.; Maione, P.; Sacco, P.C.; Zeppa, R.; Gridelli, C. Treatment of advanced non small cell lung cancer. J. Thorac. Dis. 2011, 3, 122–133. [Google Scholar]
- Cheng, T.Y.; Cramb, S.M.; Baade, P.D.; Youlden, D.R.; Nwogu, C.; Reid, M.E. The International Epidemiology of Lung Cancer: Latest Trends, Disparities, and Tumor Characteristics. J. Thorac. Oncol. 2016, 11, 1653–1671. [Google Scholar] [CrossRef] [Green Version]
- Spranger, J.; Kroke, A.; Möhlig, M.; Bergmann, M.M.; Ristow, M.; Boeing, H.; Pfeiffer, A.F. Adiponectin and protection against type 2 diabetes mellitus. Lancet 2003, 361, 226–228. [Google Scholar] [CrossRef]
- Lundell, L.S.; Massart, J.; Altıntaş, A.; Krook, A.; Zierath, J.R. Regulation of glucose uptake and inflammation markers by FOXO1 and FOXO3 in skeletal muscle. Mol. Metab. 2019, 20, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Kousteni, S. FoxO1, the transcriptional chief of staff of energy metabolism. Bone 2012, 50, 437–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, S.; Li, W.; Hou, N.; Huang, N. A Review of FoxO1-Regulated Metabolic Diseases and Related Drug Discoveries. Cells 2020, 9, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graves, D.T.; Milovanova, T.N. Mucosal Immunity and the FOXO1 Transcription Factors. Front. Immunol. 2019, 10, 2530. [Google Scholar] [CrossRef]
- Menzaghi, C.; Trischitta, V.; Doria, A. Genetic influences of adiponectin on insulin resistance, type 2 diabetes, and cardiovascular disease. Diabetes 2007, 56, 1198–1209. [Google Scholar] [CrossRef] [Green Version]
- Achari, A.E.; Jain, S.K. Adiponectin, a Therapeutic Target for Obesity, Diabetes, and Endothelial Dysfunction. Int. J. Mol. Sci. 2017, 18, 1321. [Google Scholar] [CrossRef] [Green Version]
- Ovsyannikova, I.G.; Vierkant, R.A.; Pankratz, V.S.; Jacobson, R.M.; Poland, G.A. Extended LTA, TNF, LST1 and HLA gene haplotypes and their association with rubella vaccine-induced immunity. PLoS ONE 2010, 5, e11806. [Google Scholar] [CrossRef]
- Fabisik, M.; Tureckova, J.; Pavliuchenko, N.; Kralova, J.; Balounova, J.; Vicikova, K.; Skopcova, T.; Spoutil, F.; Pokorna, J.; Angelisova, P.; et al. Regulation of Inflammatory Response by Transmembrane Adaptor Protein LST1. Front. Immunol. 2021, 12, 618332. [Google Scholar] [CrossRef]
- Akhtar, M.; Jamal, T.; Jamal, H.; Din, J.U.; Jamal, M.; Arif, M.; Arshad, M.; Jalil, F. Identification of most damaging nsSNPs in human CCR6 gene: In silico analyses. Int. J. Immunogenet. 2019, 46, 459–471. [Google Scholar] [CrossRef]
- Hengel, H.; Hannan, S.B.; Dyack, S.; MacKay, S.B.; Schatz, U.; Fleger, M.; Kurringer, A.; Balousha, G.; Ghanim, Z.; Alkuraya, F.S.; et al. Bi-allelic loss-of-function variants in BCAS3 cause a syndromic neurodevelopmental disorder. Am. J. Hum. Genet. 2021, 108, 1069–1082. [Google Scholar] [CrossRef] [PubMed]
- Fawal, M.A.; Jungas, T.; Davy, A. Inhibition of DHFR targets the self-renewing potential of brain tumor initiating cells. Cancer Lett. 2021, 503, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhao, K.N.; Chen, C. The role of CYP3A4 in the biotransformation of bile acids and therapeutic implication for cholestasis. Ann. Transl. Med. 2014, 2, 7–15. [Google Scholar] [PubMed]
- Zanger, U.M.; Klein, K. Pharmacogenetics of cytochrome P450 2B6 (CYP2B6): Advances on polymorphisms, mechanisms, and clinical relevance. Front. Genet. 2013, 4, 24. [Google Scholar] [CrossRef] [Green Version]
- Habtewold, A.; Amogne, W.; Makonnen, E.; Yimer, G.; Riedel, K.D.; Ueda, N.; Worku, A.; Haefeli, W.E.; Lindquist, L.; Aderaye, G.; et al. Long-term effect of efavirenz autoinduction on plasma/peripheral blood mononuclear cell drug exposure and CD4 count is influenced by UGT2B7 and CYP2B6 genotypes among HIV patients. J. Antimicrob. Chemother. 2011, 66, 2350–2361. [Google Scholar] [CrossRef] [Green Version]
- Kayed, H.; Bekasi, S.; Keleg, S.; Michalski, C.W.; Giese, T.; Friess, H.; Kleeff, J. BGLAP is expressed in pancreatic cancer cells and increases their growth and invasion. Mol. Cancer 2007, 6, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Zhao, S.; Zhao, S.; Chen, M.; Li, G.; Jiao, X.; Wang, Z.; Zhao, Y.; Qin, Y.; Gao, F.; et al. Mutations in MSH5 in primary ovarian insufficiency. Hum. Mol. Genet. 2017, 26, 1452–1457. [Google Scholar] [CrossRef] [Green Version]
- Orebaugh, C.D.; Fye, J.M.; Harvey, S.; Hollis, T.; Perrino, F.W. The TREX1 exonuclease R114H mutation in Aicardi-Goutières syndrome and lupus reveals dimeric structure requirements for DNA degradation activity. J. Biol. Chem. 2011, 286, 40246–40254. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Li, L.; Huang, Y.; Zhao, H.; Luo, Y. PBK/TOPK: A Therapeutic Target Worthy of Attention. Cells 2021, 10, 371. [Google Scholar] [CrossRef]
- Ting, S.B.; Deneault, E.; Hope, K.; Cellot, S.; Chagraoui, J.; Mayotte, N.; Dorn, J.F.; Laverdure, J.P.; Harvey, M.; Hawkins, E.D.; et al. Asymmetric segregation and self-renewal of hematopoietic stem and progenitor cells with endocytic Ap2a2. Blood 2012, 119, 2510–2522. [Google Scholar] [CrossRef]
- Zimmermann, R.C.; Welch, D.R. BRMS1: A multifunctional signaling molecule in metastasis. Cancer Metastasis Rev. 2020, 39, 755–768. [Google Scholar] [CrossRef] [PubMed]
- Kutukculer, N.; Topyildiz, E.; Berdeli, A.; Guven Bilgin, B.; Aykut, A.; Durmaz, A.; Cogulu, O.; Aksu, G.; Edeer Karaca, N. Four diseases, PLAID, APLAID, FCAS3 and CVID and one gene (PHOSPHOLIPASE C, GAMMA-2; PLCG2): Striking clinical phenotypic overlap and difference. Clin. Case Rep. 2021, 9, 2023–2031. [Google Scholar] [CrossRef] [PubMed]
- Piao, L.; Yuan, X.; Zhuang, M.; Qiu, X.; Xu, X.; Kong, R.; Liu, Z. Histone methyltransferase SUV39H2 serves oncogenic roles in osteosarcoma. Oncol. Rep. 2019, 41, 325–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, R.; Nozaki, H.; Kato, T.; Toyoshima, Y.; Tanaka, H.; Tsubata, Y.; Morioka, T.; Horikawa, Y.; Oyanagi, K.; Morita, T.; et al. Retinal Vasculopathy with Cerebral Leukodystrophy: Clinicopathologic Features of an Autopsied Patient with a Heterozygous TREX 1 Mutation. J. Neuropathol. Exp. Neurol. 2019, 78, 181–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weih, F.; Carrasco, D.; Bravo, R. Constitutive and inducible Rel/NF-kappa B activities in mouse thymus and spleen. Oncogene 1994, 9, 3289–3297. [Google Scholar] [PubMed]
- Gilmore, T.D.; Gerondakis, S. The c-Rel Transcription Factor in Development and Disease. Genes Cancer 2011, 2, 695–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaharija, B.; Samardžija, B.; Bradshaw, N.J. The TRIOBP Isoforms and Their Distinct Roles in Actin Stabilization, Deafness, Mental Illness, and Cancer. Molecules 2020, 25, 4967. [Google Scholar] [CrossRef]
- Yoshina, S.; Sakaki, K.; Yonezumi-Hayashi, A.; Gengyo-Ando, K.; Inoue, H.; Iino, Y.; Mitani, S. Identification of a novel ADAMTS9/GON-1 function for protein transport from the ER to the Golgi. Mol. Biol. Cell 2012, 23, 1728–1741. [Google Scholar] [CrossRef]
- Fuseya, T.; Furuhashi, M.; Matsumoto, M.; Watanabe, Y.; Hoshina, K.; Mita, T.; Ishimura, S.; Tanaka, M.; Miura, T. Ectopic Fatty Acid-Binding Protein 4 Expression in the Vascular Endothelium is Involved in Neointima Formation After Vascular Injury. J. Am. Heart Assoc. 2017, 6, e006377. [Google Scholar] [CrossRef]
- Herroon, M.K.; Rajagurubandara, E.; Hardaway, A.L.; Powell, K.; Turchick, A.; Feldmann, D.; Podgorski, I. Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms. Oncotarget 2013, 4, 2108–2123. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Wang, X.; Yue, Q. Functional loss of TAGLN inhibits tumor growth and increases chemosensitivity of non-small cell lung cancer. Biochem. Biophys. Res. Commun. 2020, 529, 1086–1093. [Google Scholar] [CrossRef] [PubMed]
- Karanian, M.; Pissaloux, D.; Gomez-Brouchet, A.; Chevenet, C.; Le Loarer, F.; Fernandez, C.; Minard, V.; Corradini, N.; Castex, M.P.; Duc-Gallet, A.; et al. SRF-FOXO1 and SRF-NCOA1 Fusion Genes Delineate a Distinctive Subset of Well-differentiated Rhabdomyosarcoma. Am. J. Surg. Pathol. 2020, 44, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Pohanka, M. Cholinesterases, A target of pharmacology and toxicology. Biomed. Pap. Med. 2011, 155, 219–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walczak-Nowicka, Ł.J.; Herbet, M. Acetylcholinesterase Inhibitors in the Treatment of Neurodegenerative Diseases and the Role of Acetylcholinesterase in their Pathogenesis. Int. J. Mol. Sci. 2021, 22, 9290. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.; Thompson, A.D.; Jones, C.K.; Lindsley, C.W.; Conn, P.J. Roles of the M1 muscarinic acetylcholine receptor subtype in the regulation of basal ganglia function and implications for the treatment of Parkinson’s disease. J. Pharmacol. Exp. Ther. 2012, 340, 595–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarpa, M.; Hesse, S.; Bradley, S.J. M1 muscarinic acetylcholine receptors: A therapeutic strategy for symptomatic and disease-modifying effects in Alzheimer’s disease? Adv. Pharmacol. 2020, 88, 277–310. [Google Scholar]
- Kang, J.; Lemaire, H.G.; Unterbeck, A.; Salbaum, J.M.; Masters, C.L.; Grzeschik, K.H.; Multhaup, G.; Beyreuther, K.; Müller-Hill, B. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 1987, 325, 733–736. [Google Scholar] [CrossRef]
- O’Brien, R.J.; Wong, P.C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci. 2011, 34, 185–204. [Google Scholar] [CrossRef] [Green Version]
- Dudek, H.; Datta, S.R.; Franke, T.F.; Birnbaum, M.J.; Yao, R.; Cooper, G.M.; Segal, R.A.; Kaplan, D.R.; Greenberg, M.E. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 1997, 275, 661–665. [Google Scholar] [CrossRef]
- Roth, L.; Kalev-Altman, R.; Monsonego-Ornan, E.; Sela-Donenfeld, D. A new role of the membrane-type matrix metalloproteinase 16 (MMP16/MT3-MMP) in neural crest cell migration. Int. J. Dev. Biol. 2017, 61, 245–256. [Google Scholar] [CrossRef]
- Chelluboina, B.; Klopfenstein, J.D.; Pinson, D.M.; Wang, D.Z.; Vemuganti, R.; Veeravalli, K.K. Matrix Metalloproteinase-12 Induces Blood-Brain Barrier Damage After Focal Cerebral Ischemia. Stroke 2015, 46, 3523–3531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Förstermann, U.; Sessa, W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2012, 33, 829–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | Molecular Formula | Structure | Canonical SMILES |
---|---|---|---|
Compound 1 | C15H18N2 | CC1=CC(=C2C(=C1)C(=C3CCCCC3=N2)N)C | |
Compound 2 | C13H14N2O4 | CC1(CC2=C(O1)C(=CC=C2)N3C(=O)OC(=N3)OC)C | |
Compound 3 | C11H16O4 | COC1(C2CCCC1C(=O)CC2=O)OC | |
Compound 4 | C19H13BrClNO3 | C1C(CC(=O)C2=C1N(C3=C(C2=O)C=C(C=C3)Cl)O)C4=CC(=CC=C4)Br |
Parameters/Compound | Compound 1 | Compound 2 | Compound 3 | Compound 4 |
---|---|---|---|---|
Absorption | ||||
Human oral bioavailability | HOB+ | HOB+ | HOB+ | HOB+ |
Human Intestinal Absorption | HIA+ | HIA+ | HIA+ | HIA+ |
Blood–Brain Barrier | BBB+ | BBB+ | BBB+ | BBB+ |
Caco-2 permeability | Caco2+ | Caco2+ | Caco2+ | Caco2- |
P-glycoprotein Substrate | Non-substrate | Non-substrate | Non-substrate | Non-substrate |
P-glycoprotein Inhibitor | Non-inhibitor | Non-inhibitor | Non-inhibitor | Non-inhibitor |
Distribution and Metabolism | ||||
Subcellular localization | Lysosomes | Mitochondria | Mitochondria | Mitochondria |
CYP450 3A4 substrate | Non-substrate | Substrate | Non-substrate | Substrate |
CYP450 2C9 substrate | Non-substrate | Non-substrate | Non-substrate | Non-substrate |
CYP450 2D6 substrate | Non-substrate | Non-substrate | Non-substrate | Non-substrate |
CYP450 3A4 inhibition | Non-inhibitor | Non-inhibitor | Non-inhibitor | Inhibitor |
CYP450 2C9 inhibition | Non-inhibitor | Non-inhibitor | Non-inhibitor | Non-inhibitor |
CYP450 2C19 inhibition | Non-inhibitor | Inhibitor | Non-inhibitor | Non-inhibitor |
CYP450 2D6 inhibition | Non-inhibitor | Non-inhibitor | Non-inhibitor | Non-inhibitor |
CYP450 1A2 inhibition | Inhibitor | Non-inhibitor | Non-inhibitor | Inhibitor |
Excretion and Toxicity | ||||
Acute Oral Toxicity | Class II | Class II | Class III | Class III |
Hepatotoxicity | Hepatotoxic | Hepatotoxic | Non-hepatotoxic | Hepatotoxic |
Carcinogenicity | Non-carcinogens | Non-carcinogens | Non-carcinogens | Non-carcinogens |
Ames mutagenesis | Mutagenic | Non-mutagenic | Non-mutagenic | Non-mutagenic |
Eye corrosion | Non-corrosive | Non-corrosive | Non-corrosive | Non-corrosive |
Eye irritation | Non-irritant | Non-irritant | Irritant | Non-irritant |
Honey bee toxicity | Non-toxic | Toxic | Toxic | Non-toxic |
Crustacea aquatic toxicity | Toxic | Toxic | Toxic | Toxic |
Fish aquatic toxicity | Toxic | Toxic | Toxic | Toxic |
Estrogen receptor binding | Binding | Binding | Binding | Binding |
Androgen receptor binding | Binding | Non-binding | Non-binding | Binding |
Thyroid receptor binding | Binding | Binding | Non-binding | Non-binding |
Glucocorticoid receptor binding | Binding | Binding | Non-binding | Binding |
Biodegradation | Non-biodegradable | Non-biodegradable | Non-biodegradable | Non-biodegradable |
ADMET Predicted Profile (Regression) | ||||
Water solubility (logS) | −3.038 | −3.82 | −3.388 | −3.987 |
Plasma protein binding (%) | 1.074 | 0.92 | 0.702 | 1.022 |
Acute Oral Toxicity (kg/mol) | 2.246 | 3.176 | 2.994 | 2.831 |
Tetrahymena pyriformis (pIGC50, ug/L) | 1.065 | 1.065 | 0.836 | 1.172 |
Compound | Pa | Pi | Biological Activities |
---|---|---|---|
Compound 1 | 0.703 | 0.005 | Calcium channel (voltage-sensitive) activator |
0.679 | 0.047 | Nootropic | |
0.594 | 0.04 | Antidyskinetic | |
Compound 2 | 0.965 | 0.003 | Antidiabetic (type 2) |
0.906 | 0 | Lipase inhibitor | |
0.39 | 0.007 | Retinoprotector | |
Compound 3 | 0.864 | 0.013 | Phobic disorders treatment |
0.806 | 0.004 | Cardiovascular analeptic | |
0.73 | 0.036 | Antieczematic | |
Compound 4 | 0.926 | 0 | Polarization stimulant |
0.754 | 0.003 | Antiprotozoal | |
0.426 | 0.04 | (Plasmodium) Chemosensitizer |
Compound | CellLine | CellLine Full Name | Tissue | Tumor Type | Pa | Pi |
---|---|---|---|---|---|---|
Compound 1 | Jurkat | Acute leukemic T-cells | Blood | Leukemia | 0.456 | 0.008 |
SK-MES-1 | Squamous cell lung carcinoma | Lung | Carcinoma | 0.411 | 0.016 | |
MDA-MB-453 | Breast adenocarcinoma | Breast | Adenocarcinoma | 0.351 | 0.204 | |
Compound 2 | SF-295 | Glioblastoma Renal carcinoma Melanoma | Brain | Glioblastoma | 0.593 | 0.01 |
A498 | Kidney | Carcinoma | 0.552 | 0.016 | ||
M19-MEL | Skin | Melanoma | 0.496 | 0.016 | ||
Compound 3 | Hs 683 | Oligodendroglioma | Brain | Glioma | 0.559 | 0.037 |
HOP-18 | Non-small cell lung carcinoma | Lung | Carcinoma | 0.505 | 0.01 | |
M19-MEL | Melanoma | Skin | Melanoma | 0.43 | 0.028 | |
Compound 4 | SK-MEL-28 | MelanomaProstate carcinoma Lung carcinoma | Skin | Melanoma | 0.548 | 0.013 |
DU-145 | Prostate | Carcinoma | 0.469 | 0.025 | ||
A549 | Lung | Carcinoma | 0.456 | 0.074 |
Compound | Genes (Upregulation) | Pa | Pi | Genes (Downregulation) | Pa | Pi |
---|---|---|---|---|---|---|
Compound 1 | FOXO1 | 0.708 | 0.135 | CCR6 | 0.573 | 0.151 |
LST1 | 0.597 | 0.146 | DHFR | 0.474 | 0.222 | |
ADIPOQ | 0.596 | 0.043 | BCAS3 | 0.451 | 0.076 | |
Compound 2 | CYP3A4 | 0.908 | 0.005 | BGLAP | 0.627 | 0.047 |
CYP2B6 | 0.778 | 0.018 | MSH5 | 0.502 | 0.134 | |
BRMS1 | 0.639 | 0.065 | TREX1 | 0.502 | 0.134 | |
Compound 3 | PBK | 0.812 | 0.052 | PLCG2 | 0.735 | 0.038 |
RACGAP1 | 0.781 | 0.071 | SUV39H2 | 0.732 | 0.075 | |
BRMS1 | 0.779 | 0.022 | TREX1 | 0.725 | 0.065 | |
Compound 4 | REL | 0.557 | 0.115 | FABP4 | 0.567 | 0.075 |
TRIOBP | 0.411 | 0.167 | TAGLN | 0.395 | 0.177 | |
ADAMTS9 | 0.4 | 0.234 | NCOA1 | 0.335 | 0.253 |
Compound | Target | Target Class | Probability |
---|---|---|---|
Compound 1 | Acetylcholinesterase | Hydrolase | 0.292 |
Butyrylcholinesterase | Hydrolase | 0.219 | |
Muscarinic acetylcholine receptor M1 | Family A G protein-coupled receptor | 0.175 | |
Compound 2 | Beta amyloid A4 protein Serine/threonine protein kinase AKT | Membrane receptor | 0.112 |
Kinase | 0.112 | ||
Compound 3 | NA | / | / |
Compound 4 | Matrix metalloproteinase 12 | Protease | 0.097 |
Matrix metalloproteinase 16 | Protease | 0.097 | |
Nitric-oxide synthase, brain | Enzyme | 0.097 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dassamiour, S.; Bensaad, M.S.; Hambaba, L.; Melakhessou, M.A.; Sami, R.; Al-Mushhin, A.A.M.; Aljahani, A.H.; Al Masoudi, L.M. In Silico Investigation of Some Compounds from the N-Butanol Extract of Centaurea tougourensis Boiss. & Reut. Crystals 2022, 12, 355. https://doi.org/10.3390/cryst12030355
Dassamiour S, Bensaad MS, Hambaba L, Melakhessou MA, Sami R, Al-Mushhin AAM, Aljahani AH, Al Masoudi LM. In Silico Investigation of Some Compounds from the N-Butanol Extract of Centaurea tougourensis Boiss. & Reut. Crystals. 2022; 12(3):355. https://doi.org/10.3390/cryst12030355
Chicago/Turabian StyleDassamiour, Saliha, Mohamed Sabri Bensaad, Leila Hambaba, Mohamed Akram Melakhessou, Rokayya Sami, Amina A. M. Al-Mushhin, Amani H. Aljahani, and Luluah M. Al Masoudi. 2022. "In Silico Investigation of Some Compounds from the N-Butanol Extract of Centaurea tougourensis Boiss. & Reut." Crystals 12, no. 3: 355. https://doi.org/10.3390/cryst12030355
APA StyleDassamiour, S., Bensaad, M. S., Hambaba, L., Melakhessou, M. A., Sami, R., Al-Mushhin, A. A. M., Aljahani, A. H., & Al Masoudi, L. M. (2022). In Silico Investigation of Some Compounds from the N-Butanol Extract of Centaurea tougourensis Boiss. & Reut. Crystals, 12(3), 355. https://doi.org/10.3390/cryst12030355