Crystallization of Glasses Containing K2O, PbO, BaO, Al2O3, B2O3, and TiO2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Glass Synthesis
2.2. Glass Characterization
2.3. Glass Crystallization
2.4. Glass-Ceramic Characterization
3. Results and Discussion
3.1. Glass Characterization
3.2. Glass-Ceramic Characterization
3.3. Evaluation of Properties
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Cheng, J.; Chen, W. Formation and structure of titanate glasses. J. Non-Cryst. Solids 1986, 80, 135–140. [Google Scholar]
- Takahashi, J.; Nakano, H.; Kageyama, K. Fabrication and dielectric properties of barium titanate-based glass-ceramics for tunable microwave LTCC application. J. Eur. Ceram. Soc. 2006, 26, 2123–2127. [Google Scholar] [CrossRef]
- Ruiz-Valdez, J.J.; Gorokhovsky, A.V.; Escalante-García, J.I.; Mendoza-Suarez, G. Glass-ceramics materials with regulated dielectric properties based in the system BaO-PbO-TiO2-B2O3-Al2O3. J. Eur. Ceram. Soc. 2004, 24, 1505–1508. [Google Scholar] [CrossRef]
- Ruiz-Valdez, J.J.; Gorokhovsky, A.V.; Escalante-García. Vitrification in the BaO-B2O3-Al2O3-TiO2 system containing small admixtures of PbO. J. Non-Cryst. Solids 2005, 351, 2036–2041. [Google Scholar] [CrossRef]
- Boroica, L.; Medianu, V.R.; Dinescu, M.; Borrica, I. Glass and glass-ceramics materials obtained by pulsed laser deposition in the BaO-TiO2-B2O3. Appl. Surf. Sci. 2005, 248, 381–387. [Google Scholar] [CrossRef]
- González, M.A.; Gorokhovsky, A.; Escalante, J.I.; Ponce, P.; Escobedo, M.A. Crystallization and properties of glass-ceramics of the K2O-BaO-B2O3-Al2O3-TiO2 System. Mat. Sci. Forum 2013, 755, 125–132. [Google Scholar] [CrossRef]
- Kokubo, T.; Tashiro, M. Dielectric properties of fine-grained PbTiO3 crystals precipitated in a glass. J. Non-Cryst. Solids 1974, 13, 328–340. [Google Scholar] [CrossRef]
- Mandal, R.K.; Prasad, C.D.; Parkash, O.; Kumar, D. Dielectric behaviour of glasses and glass ceramics in the system BaO-PbO-TiO2-B2O3-SiO2. Bull. Mater. Sci. 1987, 9, 255–262. [Google Scholar] [CrossRef]
- Gonzalez Lozano, M.A.; Gorokhovsky, A.; Escalante García, J.I.; Ponce Peña, P.; Escobedo Bretado, M.A.; López Chipres, E.; Mojica Marín, V. Glass-forming tendency in the K2O-BaO-B2O3-Al2O3-TiO2 system. Int. J. Phys. Sci. 2011, 6, 8164–8170. [Google Scholar] [CrossRef]
- Stojanovic, B.D.; Foschini, C.R.; Zaghete, M.A.; Cilense, M.; Varela, J.A. Microstructure of doped barium titanate prepared from polymeric precursors. Bol. Soc. Esp. Ceram. Vidr. 2002, 41, 90–193. [Google Scholar] [CrossRef]
- Shi, R.; Pu, Y.; Wang, W.; Shi, Y.; Li, J.; Guo, X.; Yang, M. Flash sintering of barium titanate. Ceram. Int. 2019, 45, 7085–7089. [Google Scholar] [CrossRef]
- Cai, Z.; Xing, X.; Yu, R.; Sun, X.; Liu, G. Morphology-controlled synthesis of lead titanate powders. Inorg. Chem. 2007, 46, 7423–7427. [Google Scholar] [CrossRef] [PubMed]
- Prakash, B.S.; Varma, K.B.R. Effect of the Addition of B2O3 and BaO-B2O3-SiO2 Glasses on the microstructure and dielectric properties of giant dielectric constant material CaCu3Ti4O12. J. Solid State Chem. 2007, 180, 1918–1927. [Google Scholar] [CrossRef]
- Bao, N.; Shen, L.; Feng, X.; Lu, X. High quality and yield in potassium titanate whiskers synthesized by calcination from hidrous titania. J. Am. Ceram. Soc. 2004, 87, 326–330. [Google Scholar] [CrossRef]
- Li, G.L.; Liu, M.; Wang, G.H. Microstructure studies of potassium hexatitanate whiskers. J. Mater. Res. 2001, 16, 3614–3620. [Google Scholar] [CrossRef]
- Tjong, S.C.; Meng, Y.Z. Performance of potassium titanate whiskers reinforced polyamide-6 composites. Polymer 1998, 39, 5461. [Google Scholar] [CrossRef]
- Li, J.; Wen, Z.; Xu, X.; Zhu, X. Lithium ion conduction in the anion substituted La2/3-xLi3x-yTiO3-yFy electrolyte with perovskite-type structure. Solid State Ion. 2005, 176, 2269–2276. [Google Scholar] [CrossRef]
- Sarkar, S.K.; Sharma, M.L. Liquid phase sintering of BaTiO3 by boric oxide (B2O3) and lead borate (PbB2O4) glasses and its effect on dielectric strength and dielectric constant. Mat. Res. Bull. 1989, 24, 773–779. [Google Scholar] [CrossRef]
- Lee, J.-A.; Lee, J.-H.; Kim, J.-J. Effect of borate glass additives on the sintering behaviour and dielectric properties of BaTi4O9 ceramics. J. Eur. Ceram. Soc. 2006, 26, 2135–2138. [Google Scholar] [CrossRef]
- Huang, Y.X.; Senos, A.M.R. Effect of the powder precursor characteristics in the reaction sintering of aluminium titanate. Mat. Res. Bull. 2002, 37, 99–111. [Google Scholar] [CrossRef]
- Ponce-Peña, P.; González-Lozano, M.A.; Escobedo-Bretado, M.A.; De Lira-Gómez, P.; García-Sánchez, E.; Rivera, E.; Alexandrova, L. Synthesis and characterization of potassium hexatitanate using boric acid as the flux. Ceram. Int. 2015, 41, 10051–10056. [Google Scholar] [CrossRef]
- Escobedo Bretado, M.A.; González Lozano, M.A.; Collins Martínez, V.; López Ortiz, A.; Meléndez Zaragoza, M.; Lara, R.H.; Moreno Medina, C.U. Synthesis, characterization and photocatalytic evaluation of potassium hexatitanate (K2Ti6O13) fibers. Int. J. Hydrog. Energy 2019, 44, 12470–12476. [Google Scholar] [CrossRef]
- Manyu, H.; Yimin, L.; Chunguang, L.; Xia, L. Structural, electronic and elastic properties of potassium hexatitanate crystal from first-principles calculations. Phys. B Condens. Matter. 2012, 407, 2811–2815. [Google Scholar] [CrossRef]
- Tewatia, K.; Sharma, A.; Sharma, M.; Kumar, A. Factors affecting morphological and electrical properties of Barium Titanate: A brief review. Mat. Today Proc. 2021, 44, 4548–4556. [Google Scholar] [CrossRef]
- Wei, J.; Jiang, D.; Yu, W.; Shang, F.; Chen, G. The effect of Hf doping on the dielectric and energy storage performance of barium titanate based glass ceramics. Ceram. Int. 2021, 47, 11581–11586. [Google Scholar] [CrossRef]
- Shankar, J.; Deshpande, V. Effect of MgO addition on the properties of PbO–TiO2–B2O3 glass and glass–ceramics. Ceram. Int. 2013, 39, S15–S18. [Google Scholar] [CrossRef]
- Al-Assiri, M.S.; El-Desoky, M.M.; Al-Hajry, A.; Al-Shahrani, A.; Al-Mogeeth, A.M.; Bahgat, A.A. Study of nanostructural behavior and transport properties of BaTiO3 doped vanadate glasses and glass–ceramics dispersed with ferroelectric nanocrystals. Phys. B 2009, 404, 1437–1445. [Google Scholar] [CrossRef]
- Shweta; Gautam, C.; Tripathi, V.P.; Kumar, S.; Behera, S. Synthesis, physical and mechanical properties of lead strontium titanate glass ceramics. Physica B 2021, 615, 413069. [Google Scholar] [CrossRef]
- Pernice, P.; Esposito, S.; Aronne, A.; Sigaev, V.N. Structure and crystallization behavior of glasses in the BaO-B2O3-Al2O3 system. J. Non-Cryst. Solids. 1999, 258, 1–10. [Google Scholar] [CrossRef]
- GOST 10134-82. Inorganic and Glass-Ceramic Materials, Method for the Determination of Chemical Resistance, Russia, 1983.
- Heiskanen, J. Comparison of three methods for determining the particle density of soil with liquid pycnometers. Commun. Soil Sci. Plant Anal. 1992, 23, 841–846. [Google Scholar] [CrossRef]
- Madheshiya, A.; Dey, K.K.; Ghosh, M.; Singh, J.; Gautam, C. Synthesis, structural, optical and solid state NMR study of lead bismuth titanate borosilicate glasses. J. Non-Cryst. Solids. 2019, 503–504, 288–296. [Google Scholar] [CrossRef]
- Gautam, C.; Yadav, A.K.; Singh, A.K. A review on infrared spectroscopy of borate glasses with effects of different additives. ISRN Ceram. 2012, 2012, 428497. [Google Scholar] [CrossRef] [Green Version]
- Doweidar, H.; El-Egili, K.; Ramadan, R.; Al-Zaibani, M. Structural units distribution, phase separation and properties of PbO–TiO2–B2O3 glasses. J. Non-Cryst. Solids. 2017, 466, 37–44. [Google Scholar] [CrossRef]
- Currao, A. Ba4Ti12027: Rietveld refinement using X-ray powder diffraction data. Acta Cryst. 1999, 55, 2–4. [Google Scholar]
- Kataoka, K.; Hayakawa, H.; Iyo, A.; Ken-ichi, O.; Akimoto, J. Synthesis, crystal structure and physical properties of Ba4Ti12027. Key Eng. Mater. 2013, 566, 211–214. [Google Scholar] [CrossRef]
- Fernández Navarro, J.M. El Vidrio, 2nd ed.; CSIC: Madrid, Spain, 1985; pp. 142–143. [Google Scholar]
- Steimacher, A.; Astrath, N.G.C.; Novatski, A.; Pedrochi, F.; Bento, A.C.; Baesso, M.L.; Medina, A.N. Characterization of thermo-optical and mechanical properties of calcium aluminosilicate glasses. J. Non-Cryst. Solids 2006, 352, 3613–3617. [Google Scholar] [CrossRef]
- Hubrý, A. Evaluation of glass-forming tendency by means of DTA. Czech. J. Phys. B 1972, 22, 1187–1192. [Google Scholar]
- Barbieri, L.; Karamanov, A.; Corradi, A.; Lancellotti, I.; Pelino, M.; Rincon, J.M. Structure, chemical durability and crystallization behavior of incinerator-based glassy systems. J. Non-Cryst. Solids 2008, 354, 521–528. [Google Scholar] [CrossRef]
- Dwaikat, N.; Sayyed, M.I.; Mhareb, M.H.A.; Dong, M.; Alajerami, Y.S.M.; Alrammah, I.; Khalid, A.; Ashiq, M.G.B. Durability, optical and radiation shielding properties for new series of boro-tellurite glass. Optik 2021, 245, 167667. [Google Scholar] [CrossRef]
- Stalin, S.; Gaikwad, D.K.; Al-Buriahi, M.S.; Srinivasu, C.; Ahmmad, S.A.; Tekin, H.O.; Rahman, S. Influence of Bi2O3/WO3 substitution on the optical, mechanical, chemical durability and gamma ray shielding properties of lithium-borate glasses. Ceram. Int. 2021, 47, 5286–5299. [Google Scholar] [CrossRef]
- Avinash, B.S.; Chaturmukha, V.S.; Jayanna, H.S.; Naveen, C.S.; Rajeeva, M.P.; Harish, B.M.; Suresh, S.; Lamani, A.R. Effect of particle size on band gap and DC electrical conductivity of TiO2 nanomaterial. AIP Conf. Proc. 2016, 1728, 020426. [Google Scholar] [CrossRef]
- Savio, A.K.P.D.; Starikov, D.; Bensaoula, A.; Pillai, R.; de la Torre García, L.L.; Robles Hernández, F.C. Tunable TiO2 (anatase and rutile) materials manufactured by mechanical means. Ceram. Int. 2012, 38, 3529–3535. [Google Scholar] [CrossRef]
- Savio, A.K.P.D.; Fletcher, J.; Robles Hernández, F.C. Sonosynthesis of nanostructured TiO2 doped with transition metals having variable bandgap. Ceram. Int. 2013, 39, 2753–2765. [Google Scholar] [CrossRef]
- Cernea, M.; Secua, M.; Radu, R.; Ganea, P.; Surdu, V.A.; Trusca, R.; Vasile, E.T.; Secu, E.C. Structural, electrical properties and photoluminescence analyses of the terbium doped barium titanate. J. Alloy. Compd. 2021, 8781, 60380. [Google Scholar] [CrossRef]
- Thakur, S.; Thakur, V.; Kaur, A.; Singh, L. Study of the crystallization and structural behavior of bismuth barium titanate glass-ceramics. J. Non-Cryst. Solids. 2021, 557, 120563. [Google Scholar] [CrossRef]
Sample Code | Glass Composition (Mole %) | Glass-Ceramics Code | Glass Transition temperature Tg (°C) | Crystallization Temperature Tc (°C) | |||||
---|---|---|---|---|---|---|---|---|---|
TiO2 | K2O | BaO | PbO | Al2O3 | B2O3 | ||||
G1 | 38 | 9 | 23.5 | 0.5 | 16 | 13 | GC1 | 715 | 723 |
G2 | 38 | 9 | 22.5 | 1.5 | 16 | 13 | GC2 | 710 | 718 |
G3 | 38 | 9 | 21.5 | 2.5 | 16 | 13 | GC3 | 708 | 716 |
G4 | 38 | 9 | 20.5 | 3.5 | 16 | 13 | GC4 | 692 | 700 |
G5 | 38 | 9 | 19.5 | 4.5 | 16 | 13 | GC5 | 690 | 700 |
Sample | Glassy Phase (Area %) | Crystalline Phase (Area %) | Crystallite Size (nm) | Density (g/cm3) | Chemical Resistance (Losses, wt.%) | Band-Gap (eV) | |
---|---|---|---|---|---|---|---|
Acid | Basic | ||||||
GC1 | 60.9 | 39.1 | 22.35 | 2.80 | 29.99 | 12.95 | 3.01 |
GC2 | 60.0 | 40.0 | 10.14 | 3.08 | 30.48 | 16.30 | 3.02 |
GC3 | 64.4 | 35.6 | 14.03 | 3.28 | 25.80 | 10.70 | 3.05 |
GC4 | 65.5 | 35.5 | 13.24 | 3.53 | 22.83 | 12.45 | 2.90 |
GC5 | 61.1 | 38.9 | 15.74 | 3.55 | 26.52 | 15.94 | 2.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponce-Peña, P.; González-Lozano, M.A.; Escobedo-Bretado, M.Á.; Núñez-Ramírez, D.M.; Rodríguez-Pulido, A.; Quiñones Jurado, Z.V.; Poisot, M.; Sulbarán-Rangel, B. Crystallization of Glasses Containing K2O, PbO, BaO, Al2O3, B2O3, and TiO2. Crystals 2022, 12, 574. https://doi.org/10.3390/cryst12050574
Ponce-Peña P, González-Lozano MA, Escobedo-Bretado MÁ, Núñez-Ramírez DM, Rodríguez-Pulido A, Quiñones Jurado ZV, Poisot M, Sulbarán-Rangel B. Crystallization of Glasses Containing K2O, PbO, BaO, Al2O3, B2O3, and TiO2. Crystals. 2022; 12(5):574. https://doi.org/10.3390/cryst12050574
Chicago/Turabian StylePonce-Peña, Patricia, María Azucena González-Lozano, Miguel Ángel Escobedo-Bretado, Diola Marina Núñez-Ramírez, Alicia Rodríguez-Pulido, Zoe V. Quiñones Jurado, Martha Poisot, and Belkis Sulbarán-Rangel. 2022. "Crystallization of Glasses Containing K2O, PbO, BaO, Al2O3, B2O3, and TiO2" Crystals 12, no. 5: 574. https://doi.org/10.3390/cryst12050574
APA StylePonce-Peña, P., González-Lozano, M. A., Escobedo-Bretado, M. Á., Núñez-Ramírez, D. M., Rodríguez-Pulido, A., Quiñones Jurado, Z. V., Poisot, M., & Sulbarán-Rangel, B. (2022). Crystallization of Glasses Containing K2O, PbO, BaO, Al2O3, B2O3, and TiO2. Crystals, 12(5), 574. https://doi.org/10.3390/cryst12050574