Comparative Studies of Blue-Emitting Zinc Selenide Nanocrystals Doped with Ag, Cu, and Mg towards Medical Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of ZnSe:X-Capped MPA Nanocrystals
2.3. Characterization
2.4. Cytotoxic Test
3. Results and Discussion
3.1. Synthesis and Characterization of ZnSe:X NPs
3.2. The Interaction of Nanoparticles with Amino Group (in lysine)
3.3. Toxicity of ZnSe:X toward hMSCs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Constantine, C.A.; Gattás-Asfura, K.M.; Mello, S.V.; Crespo, G.; Rastogi, V.; Cheng, T.-C.; DeFrank, J.J.; Leblanc, R.M. Layer-by-layer biosensor assembly incorporating functionalized quantum dots. Langmuir 2003, 19, 9863–9867. [Google Scholar] [CrossRef]
- Biju, V.; Muraleedharan, D.; Nakayama, K.-i.; Shinohara, Y.; Itoh, T.; Baba, Y.; Ishikawa, M. Quantum dot-insect neuropeptide conjugates for fluorescence imaging, transfection, and nucleus targeting of living cells. Langmuir 2007, 23, 10254–10261. [Google Scholar] [CrossRef] [PubMed]
- Voura, E.B.; Jaiswal, J.K.; Mattoussi, H.; Simon, S.M. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat. Med. 2004, 10, 993–998. [Google Scholar] [CrossRef] [PubMed]
- Karakoti, A.S.; Shukla, R.; Shanker, R.; Singh, S. Surface of quantum dots for biological applications. Adv. Colloid Interface Sci. 2015, 215, 28–45. [Google Scholar] [CrossRef]
- Luong, B.T.; Hyeong, E.; Ji, S.; Kim, N. Green synthesis of highly UV-orange emitting ZnSe/ZnS: Mn/ZnS core/shell/shell nanocrystals by a three-step single flask method. RSC Adv. 2012, 2, 12132–12135. [Google Scholar] [CrossRef]
- Luong, B.T.; Hyeong, E.; Yoon, S.; Choi, J.; Kim, N. Facile synthesis of UV-white light emission ZnSe/ZnS: Mn core/(doped) shell nanocrystals in aqueous phase. RSC Adv. 2013, 3, 23395–23401. [Google Scholar] [CrossRef]
- Draaisma, G.J.J.; Reardon, D.; Schenning, A.P.H.J.; Meskers, S.C.J.; Bastiaansen, C.W.M. Ligand exchange as a tool to improve quantum dot miscibility in polymer composite layers used as luminescent down-shifting layers for photovoltaic applications. J. Mater. Chem. C 2016, 4, 5747–5754. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Wang, Y.; Hu, R.; Roy, I.; Yong, K.-T. Cadmium-free quantum dots for biophotonic imaging and sensing. In Handbook of Photonics for Biomedical Engineering; Ho, A.H.-P., Kim, D., Somekh, M.G., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 841–870. [Google Scholar]
- Mai, X.T.; Bui, D.T.; Bui, T.T.; Luong, B.T. Study of single-step synthesis of hyperbranced highly luminescence doped Znse:Mn, Znse:Mn/Zns quantum dots and their interactions with acid amine. J. Eng. Res. 2018, 7, 27–32. [Google Scholar]
- Xiong, S.; Huang, S.; Tang, A.; Teng, F. Synthesis and luminescence properties of water-dispersible ZnSe nanocrystals. Mater. Lett. 2007, 61, 5091–5094. [Google Scholar] [CrossRef]
- Aboulaich, A.; Geszke, M.; Balan, L.; Ghanbaja, J.; Medjahdi, G.; Schneider, R. Water-based route to colloidal Mn-doped ZnSe and core/shell ZnSe/ZnS quantum dots. Inorg. Chem. 2010, 49, 10940–10948. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Diestra, D.; Beltran-Huarac, J.; Bracho-Rincon, D.P.; González-Feliciano, J.A.; González, C.I.; Weiner, B.R.; Morell, G. Biocompatible ZnS:Mn quantum dots for reactive oxygen generation and detection in aqueous media. J. Nanoparticle Res. 2015, 17, 461–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parani, S.; Tsolekile, N.; May, B.M.; Pandian, K.; Oluwafemi, O.S. Mn-doped ZnSe quantum dots as fluorimetric mercury sensor. In Nonmagnetic and Magnetic Quantum Dots. 2018. Available online: https://www.intechopen.com/chapters/56882 (accessed on 10 March 2022).
- Hu, Z.; Xu, S.; Xu, X.; Wang, Z.; Wang, Z.; Wang, C.; Cui, Y. Co-doping of Ag into Mn:ZnSe quantum dots: Giving optical filtering effect with improved monochromaticity. Sci. Rep. 2015, 5, 14817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, M.; Kirstein, S.; Möhwald, H.; Rogach, A.L.; Kornowski, A.; Eychmüller, A.; Weller, H. Strongly photoluminescent CdTe nanocrystals by proper surface modification. J. Phys. Chem. B 1998, 102, 8360–8363. [Google Scholar] [CrossRef]
- Wu, Y.A.; Warner, J.H. Shape and property control of Mn doped ZnSe quantum dots: From branched to spherical. J. Mater. Chem. 2012, 22, 417–424. [Google Scholar] [CrossRef]
- Yu, J.H.; Kim, J.; Hyeon, T.; Yang, J. Facile synthesis of manganese (II)-doped ZnSe nanocrystals with controlled dimensionality. J. Chem. Phys. 2019, 151, 244701. [Google Scholar] [CrossRef]
- Murase, N.; Gao, M. Preparation and photoluminescence of water-dispersible ZnSe nanocrystals. Mater. Lett. 2004, 58, 3898–3902. [Google Scholar] [CrossRef]
- Dahl, J.A.; Maddux, B.L.S.; Hutchison, J.E. Toward greener nanosynthesis. Chem. Rev. 2007, 107, 2228–2269. [Google Scholar] [CrossRef] [Green Version]
- Wei, Q.; Kang, S.-Z.; Mu, J. “Green” synthesis of starch capped CdS nanoparticles. Colloid. Surf. A 2004, 247, 125–127. [Google Scholar] [CrossRef]
- Murphy, C.J. Sustainability as an emerging design criterion in nanoparticle synthesis and applications. J. Mater. Chem. 2008, 18, 2173–2176. [Google Scholar] [CrossRef]
- Senthilkumar, K.; Thirunavukarasu, K.; Samikannu, K.; Balasubramanin, V. Low temperature method for synthesis of starch-capped ZnSe nanoparticles and its characterization studies. J. Appl. Phys. 2012, 112, 114331–153111. [Google Scholar] [CrossRef]
- Pandey, V.; Tripathi, V.K.; Singh, K.K.; Bhatia, T.; Upadhyay, N.K.; Goyal, B.; Pandey, G.; Hwang, I.; Tandon, P. Nitrogen donor ligand for capping ZnS quantum dots: A quantum chemical and toxicological insight. RSC Adv. 2019, 9, 28510–28524. [Google Scholar] [CrossRef] [Green Version]
- Winiarz, J.G.; Zhang, L.; Lal, M.; Friend, C.S.; Prasad, P.N. Photogeneration, charge transport, and photoconductivity of a novel PVK/CdS-nanocrystal polymer composite. Chem. Phys. 1999, 245, 417–428. [Google Scholar] [CrossRef]
- Babu, R.; Zhang, J.; Beckman, E.J.; Virji, M.; Pasculle, W.A.; Wells, A.J.B. Antimicrobial activities of silver used as a polymerization catalyst for a wound-healing matrix. Biomaterials 2006, 27, 4304–4314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciobanu, C.S.; Massuyeau, F.; Constantin, L.V.; Predoi, D.J.N.R.L. Structural and physical properties of antibacterial Ag-doped nano-hydroxyapatite synthesized at 100 C. Nanoscale Res. Lett. 2011, 6, 613. [Google Scholar] [CrossRef] [Green Version]
- Lok, C.-N.; Ho, C.-M.; Chen, R.; He, Q.-Y.; Yu, W.-Y.; Sun, H.; Tam, P.K.-H.; Chiu, J.-F.; Che, C.-M. Silver nanoparticles: Partial oxidation and antibacterial activities. JBIC J. Biol. Inorg. Chem. 2007, 12, 527–534. [Google Scholar] [CrossRef]
- Zhang, X.T.; Ip, K.M.; Li, Q.; Hark, S.K. Photoluminescence of Ag-doped ZnSe nanowires synthesized by metalorganic chemical vapor deposition. Appl. Phys. Lett. 2005, 86, 203114. [Google Scholar] [CrossRef]
- Wang, C.; Xu, S.; Shao, Y.; Wang, Z.; Xu, Q.; Cui, Y. Synthesis of Ag doped ZnlnSe ternary quantum dots with tunable emission. J. Mater. Chem. C 2014, 2, 5111–5115. [Google Scholar] [CrossRef]
- Xi, Y.; Bouanani, L.E.; Xu, Z.; Quevedo-Lopez, M.A.; Minary-Jolandan, M. Solution-based Ag-doped ZnSe thin films with tunable electrical and optical properties. J. Mater. Chem. C 2015, 3, 9781–9788. [Google Scholar] [CrossRef]
- Sharma, M.; Sen, S.; Gupta, J.; Ghosh, M.; Pitale, S.; Gupta, V.; Gadkari, S.C. Tunable blue-green emission from ZnS(Ag) nanostructures grown by hydrothermal synthesis. J. Mater. Res. 2018, 33, 3963–3970. [Google Scholar] [CrossRef]
- Muntaz Begum, S.; Rao, M.C.; Ravikumar, R.V.S.S.N. Cu2+ doped PVA passivated ZnSe nanoparticles-preparation, characterization and properties. J. Inorg. Organomet. Polym. Mater. 2013, 23, 350–356. [Google Scholar] [CrossRef]
- Khafajeh, R.; Molaei, M.; Karimipour, M. Synthesis of ZnSe and ZnSe:Cu quantum dots by a room temperature photochemical (UV-assisted) approach using Na(2) SeO(3) as Se source and investigating optical properties. Luminescence 2017, 32, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Gong, F.; Sun, L.; Ruan, H.; Cai, H. Hydrothermal synthesis and photoluminescence properties of Cu-doped ZnSe quantum dots using glutathione as stabilizer. Mater. Express 2018, 8, 173–181. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, S.; Weng, Y.; Zhang, Y.; Wu, C.; Sun, L.; Zhang, S.; Yan, Q.; Guo, T.; Zhou, X. Facile synthesis and color conversion of Cu-doped ZnSe quantum dots in an aqueous solution. J. Mater. Sci. Mater. Electron. 2019, 30, 21406–21415. [Google Scholar] [CrossRef]
- Khezripour, A.R.; Souri, D. PH-, microwave irradiation time-, and dopant content- sensitive photoluminescence of pure and Cu-doped ZnSe quantum dots fabricated by rapid microwave activated method. Optik 2019, 183, 294–301. [Google Scholar] [CrossRef]
- Kumar, R.A.; Prasad, M.V.V.K.S.; Kiran Kumar, G.; Venkateswarlu, M.; Rajesh, C. Tuning of emission from copper-doped ZnSe quantum dots. Phys. Scr. 2019, 94, 115806. [Google Scholar] [CrossRef]
- Bahador, A.R.; Molaei, M.; Karimipour, M. One-pot room temperature synthesizing Cu- and Mn-doped ZnSe nanocrystals by a rapid photochemical method. Mod. Phys. Lett. B 2016, 30, 1650227. [Google Scholar] [CrossRef]
- Archana, J.; Navaneethan, M.; Prakash, T.; Ponnusamy, S.; Muthamizhchelvan, C.; Hayakawa, Y. Chemical synthesis and functional properties of magnesium doped ZnSe nanoparticles. Mater. Lett. 2013, 100, 54–57. [Google Scholar] [CrossRef]
- Huy, B.T.; Seo, M.-H.; Phong, P.T.; Lim, J.-M.; Lee, Y.-I. Facile synthesis of highly luminescent Mg(II), Cu(I)-codoped CdS/ZnSe core/shell nanoparticles. Chem. Eng. J. 2014, 236, 75–81. [Google Scholar] [CrossRef]
- Pradhan, N.; Goorskey, D.; Thessing, J.; Peng, X. An Alternative of CdSe nanocrystal emitters: Pure and tunable impurity emissions in ZnSe nanocrystals. J. Am. Chem. Soc. 2005, 127, 17586–17587. [Google Scholar] [CrossRef]
- Shavel, A.; Gaponik, N.; Eychmüller, A. Efficient UV-blue photoluminescing thiol-stabilized water-soluble alloyed ZnSe(S) nanocrystals. J. Phys. Chem. B 2004, 108, 5905–5908. [Google Scholar] [CrossRef]
- Fang, Z.; Wu, P.; Zhong, X.; Yang, Y.-J. Synthesis of highly luminescent Mn:ZnSe/ZnS nanocrystals in aqueous media. Nanotechnology 2010, 21, 305604. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Gao, X.; Ma, Q.; Su, X. Aqueous synthesis of mercaptopropionic acid capped Mn2+-doped ZnSe quantum dots. J. Mater. Chem. 2009, 19, 7016–7022. [Google Scholar] [CrossRef]
- Lan, G.-Y.; Lin, Y.-W.; Huang, Y.-F.; Chang, H.-T. Photo-assisted synthesis of highly fluorescent ZnSe(S) quantum dots in aqueous solution. J. Mater. Chem. 2007, 17, 2661–2666. [Google Scholar] [CrossRef]
- Norman, T.J.; Magana, D.; Wilson, T.; Burns, C.; Zhang, J.Z.; Cao, D.; Bridges, F. Optical and surface structural properties of Mn2+-Doped ZnSe nanoparticles. J. Phys. Chem. B 2003, 107, 6309–6317. [Google Scholar] [CrossRef]
- Hill, N.A.; Whaley, K.B. A theoretical study of the influence of the surface on the electronic structure of CdSe nanoclusters. J. Chem. Phys. 1994, 100, 2831–2837. [Google Scholar] [CrossRef]
- Underwood, D.F.; Kippeny, T.; Rosenthal, S.J. Ultrafast carrier dynamics in cdse nanocrystals determined by femtosecond fluorescence upconversion spectroscopy. J. Phys. Chem. B 2001, 105, 436–443. [Google Scholar] [CrossRef]
- Becker, W.G.; Bard, A.J. Photoluminescence and photoinduced oxygen adsorption of colloidal zinc sulfide dispersions. J. Phys. Chem. 1983, 87, 4888–4893. [Google Scholar] [CrossRef]
- Yadav, K.; Jaggi, N. Effect of Ag doping on structural and optical properties of ZnSe nanophosphors. Mater. Sci. Semicon. Process. 2015, 30, 376–380. [Google Scholar] [CrossRef]
- Xu, S.; Wang, C.; Wang, Z.; Cui, Y. Theoretical and experimental investigation of stability and spectra of doped Ag:ZnSe nanocrystals. J. Mol. Model. 2014, 20, 2184. [Google Scholar] [CrossRef]
- Cao, L.X.; Sun, D.K.; Lin, Y.X. Preparation and luminescence properties of core-shell ZnS: Cu/ZnS nano-particles. Guang Pu Xue Yu Guang Pu Fen Xi 2006, 26, 2000–2002. [Google Scholar]
- Suyver, J.F.; van der Beek, T.; Wuister, S.F.; Kelly, J.J.; Meijerink, A. Luminescence of nanocrystalline ZnSe:Cu. Appl. Phys. Lett. 2001, 79, 4222–4224. [Google Scholar] [CrossRef]
- Han, J.; Zhang, H.; Tang, Y.; Liu, Y.; Yao, X.; Yang, B. Role of redox reaction and electrostatics in transition-metal impurity-promoted photoluminescence evolution of water-soluble ZnSe nanocrystals. J. Phys. Chem. C 2009, 113, 7503–7510. [Google Scholar] [CrossRef]
- Molaei, M.; Khezripour, A.R.; Karimipour, M. Synthesis of ZnSe nanocrystals (NCs) using a rapid microwave irradiation method and investigation of the effect of copper (Cu) doping on the optical properties. Appl. Surf. Sci. 2014, 317, 236–240. [Google Scholar] [CrossRef]
- Rajesh, C.; Phadnis, C.V.; Sonawane, K.G.; Mahamuni, S. Synthesis and optical properties of copper-doped ZnSe quantum dots. Phys. Scr. 2014, 90, 015803. [Google Scholar] [CrossRef]
- Han, J.; Zhang, H.; Sun, H.; Zhou, D.; Yang, B. Manipulating the growth of aqueous semiconductor nanocrystals through amine-promoted kinetic process. Phys. Chem. Chem. Phys. 2010, 12, 332–336. [Google Scholar] [CrossRef]
- Zhang, B.-H.; Wu, F.-Y.; Wu, Y.-M.; Zhan, X.-S. Fluorescent method for the determination of sulfide anion with zns:mn quantum dots. J. Fluoresc. 2010, 20, 243–250. [Google Scholar] [CrossRef]
- Guo, K.; Han, F.; Arslan, Z.; McComb, J.; Mao, X.; Zhang, R.; Sudarson, S.; Yu, H. Adsorption of Cs from water on surface-modified MCM-41 mesosilicate. Water Air Soil Pollut. 2015, 226, 288. [Google Scholar] [CrossRef]
- Liu, L.; Peng, M.; Xia, H.; Li, N. Key factors in the stability of doped ZnSe:Mn@MPA semiconductor nanocrystals. Chem. Phys. Lett. 2019, 730, 544–550. [Google Scholar] [CrossRef]
- Huang, F.; Huang, T.; Wu, X.; Pang, W. Synthesis and characterization of ZnSe: Ag/SiO2 nanoparticles. E3S Web Conf. 2021, 261, 02063. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, Z.; Ying, J.Y. Aqueous synthesis of glutathione-capped ZnSe and Zn1–xCdxSe alloyed quantum dots. Adv. Mater. 2007, 19, 1475–1479. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, V.K.; Pham, D.K.; Tran, N.Q.; Dang, L.H.; Nguyen, N.H.; Nguyen, T.V.; Nguyen, T.H.; Luong, T.B. Comparative Studies of Blue-Emitting Zinc Selenide Nanocrystals Doped with Ag, Cu, and Mg towards Medical Applications. Crystals 2022, 12, 625. https://doi.org/10.3390/cryst12050625
Nguyen VK, Pham DK, Tran NQ, Dang LH, Nguyen NH, Nguyen TV, Nguyen TH, Luong TB. Comparative Studies of Blue-Emitting Zinc Selenide Nanocrystals Doped with Ag, Cu, and Mg towards Medical Applications. Crystals. 2022; 12(5):625. https://doi.org/10.3390/cryst12050625
Chicago/Turabian StyleNguyen, Van Khiem, Duy Khanh Pham, Ngoc Quyen Tran, Le Hang Dang, Ngoc Hoa Nguyen, Thanh Viet Nguyen, Thi Hiep Nguyen, and Thi Bich Luong. 2022. "Comparative Studies of Blue-Emitting Zinc Selenide Nanocrystals Doped with Ag, Cu, and Mg towards Medical Applications" Crystals 12, no. 5: 625. https://doi.org/10.3390/cryst12050625
APA StyleNguyen, V. K., Pham, D. K., Tran, N. Q., Dang, L. H., Nguyen, N. H., Nguyen, T. V., Nguyen, T. H., & Luong, T. B. (2022). Comparative Studies of Blue-Emitting Zinc Selenide Nanocrystals Doped with Ag, Cu, and Mg towards Medical Applications. Crystals, 12(5), 625. https://doi.org/10.3390/cryst12050625