Influence of Organic-Modified Inorganic Matrices on the Optical Properties of Palygorskite–Curcumin-Type Hybrid Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. The Host Inorganic Matrix
2.1.2. Curcumin Dyes
2.2. Methods
2.2.1. Obtaining the Palygorskite Functionalization
2.2.2. Obtaining the Colored Hybrid Materials
2.2.3. Characterization
2.2.4. Evaluation of Resistance to Low Temperature, Acid, Alkali and Saline Solution
3. Results and Discussion
3.1. Analytical Characterization of the Materials
3.1.1. XRD Analysis of Hybrid Materials
3.1.2. N2 Adsorption Isotherms
3.1.3. Characterization of Hybrid Materials by ATR-FTIR Spectra
3.1.4. Thermogravimetric Analysis of Composite Materials
3.2. Photophysical Studies
3.2.1. Spectrophotometric Properties of Hybrid Materials
3.2.2. Fluorescent Properties of Hybrid Materials
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gil, A.; Santamaría, L.; Korili, S.A.; Barbosa, L.V.; de Souza, S.D.; Marçal, L.; de Faria, E.H.; Ciuffi, K.J. A review of organic-inorganic hybrid clay based adsorbents for contaminants removal: Synthesis, perspectives and applications. J. Environ. Chem. Eng. 2021, 9, 105808. [Google Scholar] [CrossRef]
- Kim, M.H.; Choi, G.; Elzatahry, A.; Vinu, A.; Choy, Y.B.; Choy, J.H. Review of Clay-Drug Hybrid Materials for Biomedical Applications: Administration Routes. Clays Clay Miner. 2016, 64, 115–130. [Google Scholar] [CrossRef] [PubMed]
- da Rocha, M.C.; Galdino, T.; Trigueiro, P.; Honorio, L.M.C.; de Melo Barbosa, R.; Carrasco, S.M.; Silva-Filho, E.C.; Osajima, J.A.; Viseras, C. Clays as Vehicles for Drug Photostability. Pharmaceutics 2022, 14, 796. [Google Scholar] [CrossRef]
- Charisiou, N.D.; Sebastian, V.; Hinder, S.J.; Baker, M.A.; Polychronopoulou, K.; Goula, M.A. Ni Catalysts Based on Attapulgite for Hydrogen Production through the Glycerol Steam Reforming Reaction. Catalysts 2019, 9, 650. [Google Scholar] [CrossRef] [Green Version]
- Ispas, G.C.; Manea, R.; Brazdis, R.I.; Baroi, A.M.; Fistos, T.; Fierascu, R.C.; Raduly, M.F. Iron Oxide/Phosphatic Materials Composites with Potential Applications in Environmental Protection. Materials 2020, 13, 5034. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Y.; Jiang, J.; Yao, J. Designing of Recyclable Attapulgite for Wastewater Treatments: A Review. ACS Sustain. Chem. Eng. 2019, 7, 1855–1869. [Google Scholar] [CrossRef]
- Silva, V.C.; Araújo, M.E.B.; Rodrigues, A.M.; Cartaxo, J.M.; Menezes, R.R.; Neves, G.A. Adsorption Behavior of Acid-Treated Brazilian Palygorskite for Cationic and Anionic Dyes Removal from the Water. Sustainability 2021, 13, 3954. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W.; Mu, B.; Wang, Q.; Wang, A. Effect of grinding time on fabricating a stable methylene blue/palygorskite hybrid nanocomposite. Powder Technol. 2015, 280, 173–179. [Google Scholar] [CrossRef]
- Zhuang, G.; Li, L.; Li, M.; Yuan, P. Influences of micropores and water molecules in the palygorskite structure on the color and stability of Maya blue pigment. Microporous Mesoporous Mater. 2022, 330, 111615. [Google Scholar] [CrossRef]
- Sousa, M.U.; Rodrigues, A.M.; Araujo, M.E.B.; Menezes, R.R.; Neves, G.A.; Lira, H.L. Adsorption of Sodium Diclofenac in Functionalized Palygoskite Clays. Materials 2022, 15, 2708. [Google Scholar] [CrossRef]
- Giustetto, R.; Chiari, G. Crystal structure refinement of palygorskite from neutron powder diffraction. Eur. J. Mineral. 2004, 16, 521–532. [Google Scholar] [CrossRef]
- Benaissa, R.; Ezzouhra, Z.; Lahcen, B.; Omar, L.; Francis, M.; Lahcen, D.; Christine, L.M.; M’Barek, A.; François, S.; Amane, J.; et al. Comprehensive physicochemical study of dioctahedral palygorskite rich clay from Marrakech High Atlas (Morocco). Phys. Chem. Miner. 2013, 40, 411–424. [Google Scholar] [CrossRef] [Green Version]
- Almeida, R.; Ferraz, E.; Santarén, J.; Gamelas, J.A.F. Comparison of Surface Properties of Sepiolite and Palygorskite: Surface Energy and Nanoroughness. Nanomaterials 2021, 11, 1579. [Google Scholar] [CrossRef] [PubMed]
- Straulino-Mainou, L.; Pi-Puig, T.; Lailson-Tinoco, B.; Castro-Chong, K.; Urbina-Lemus, M.F.; Escalante-Gonzalbo, P.; Sedov, S.; Flores-Morán, A. Maya Blue Used in Wall Paintings in Mexican Colonial Convents of the XVI Century. Coatings 2021, 11, 88. [Google Scholar] [CrossRef]
- Grazia, C.; Buti, D.; Amat, A.; Rosi, F.; Romani, A.; Domenici, D.; Sgamellotti, A.; Miliani, C. Shades of blue: Non-invasive spectroscopic investigations of Maya blue pigments. From laboratory mock-ups to Mesoamerican codices. Herit. Sci. 2020, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Xia, K.; Cao, M.; Zhang, X. Surface Modification of Attapulgite by Grafting Cationic Polymers for Treating Dye Wastewaters. Materials 2021, 14, 792. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Shen, Y.; Chen, X.; Dong, L.; Bao, H.Y.M.; Li, Y. Cationic surfactant-modified palygorskite particles as effective stabilizer for Pickering emulsion gel formation. Appl. Clay Sci. 2022, 219, 106439. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, W.; Kang, Y.; Wang, Q.; Wang, A. Structure evolution of brick-red palygorskite induced by hydroxylammonium chloride. Powder Technol. 2018, 327, 246–254. [Google Scholar] [CrossRef]
- Kasprzhitskii, A.; Lazorenko, G.; Kruglikov, A.; Kuchkina, I.; Gorodov, V. Effect of Silane Functionalization on Properties of Poly(Lactic Acid)/Palygorskite Nanocomposites. Inorganics 2021, 9, 3. [Google Scholar] [CrossRef]
- da Silva, T.F.; de Souza, G.P.M.; de Melo Morgado, G.F.; Wearn, Y.N.; Albers, A.P.F.; Quinteiro, E.; Passador, F.R. A Brief Review of the Latest Advances of Attapulgite as a Reinforcing Agent in Polymer Matrix Nanocomposites. Am. J. Eng. Appl. Sci. 2021, 14, 292–307. [Google Scholar] [CrossRef]
- Ferraz, E.; Alves, L.; Sanguino, P.; Santarén, J.; Rasteiro, M.G.; Gamelas, J.A.F. Stabilization of Palygorskite Aqueous Suspensions Using Bio-Based and Synthetic Polyelectrolytes. Polymers 2021, 13, 129. [Google Scholar] [CrossRef] [PubMed]
- Abbassia, H.; Abidia, R.; Zayani, M.B. A short review on the silylated clays—Polymer nanocomposites: Synthesis, properties and applications. J. Mar. Chim. Heterocycl. 2021, 20, 117–134. [Google Scholar]
- Zhong, H.; Mu, B.; Yan, P.; Jing, Y.; Hui, A.; Wang, A. A comparative study on surface/interface mechanism and antibacterial properties of different hybrid materials prepared with essential oils active ingredients and palygorskite. Colloids Surf. A Physicochem. Eng. Asp. 2021, 618, 126455. [Google Scholar] [CrossRef]
- Raduly, M.; Raditoiu, V.; Raditoiu, A.; Wagner, L.; Amariutei, V.; Nicolae, C. Luminescent hybrid materials based on curcumin derivatives embedded in palygorskite. Mat. Plast. 2018, 55, 63–67. [Google Scholar] [CrossRef]
- Wang, Q.; Mu, B.; Zhang, Y.; Zhang, J.; Wang, A. Palygorskite-based hybrid fluorescent pigment: Preparation, spectroscopic characterization and environmental stability. Microporous Mesoporous Mater. 2016, 224, 107–115. [Google Scholar] [CrossRef]
- Silva, G.T.M.; Silva, C.P.; Gehlen, M.H.; Oake, J.; Bohne, C.; Quina, F.H. Organic/inorganic hybrid pigments from flavylium cations and palygorskite. Appl. Clay Sci. 2018, 162, 478–486. [Google Scholar] [CrossRef]
- Zhou, P.; Tan, Y.Q.; Zhang, L.; Zhou, Y.M.; Gao, F.; Zhou, G.H. Effects of dietary supplementation with the combination of zeolite and attapulgite on growth performance, nutrient digestibility, secretion of digestive enzymes and intestinal health in broiler chickens. Asian-Australas. J. Anim. Sci. 2014, 27, 1311–1318. [Google Scholar] [CrossRef]
- Suarez, M.; García-Rivas, J.; Morales, J.; Lorenzo, A.; García-Vicente, A.; García-Romero, E. Review and new data on the surface properties of palygorskite: A comparative study. Appl. Clay Sci. 2022, 216, 106311. [Google Scholar] [CrossRef]
- Ruiz-Hitzky, E.; Ruiz-García, C.; Fernandes, F.M.; Lo Dico, G.; Lisuzzo, L.; Prevot, V.; Darder, M.; Aranda, P. Sepiolite-Hydrogels: Synthesis by Ultrasound Irradiation and Their Use for the Preparation of Functional Clay Based Nanoarchitectured Materials. Front. Chem. 2021, 9, 733105. [Google Scholar] [CrossRef]
- Cheng, Y.; Xu, Q.; Chen, Y.; Su, Y.; Wen, C.; Zhou, Y. Modified Palygorskite Improves Immunity, Antioxidant Ability, Intestinal Morphology, and Barrier Function in Broiler Chickens Fed Naturally Contaminated Diet with Permitted Feed Concentrations of Fusarium Mycotoxins. Toxins 2018, 10, 482. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Chen, Y.; Cheng, Y.; Wen, C.; Zhou, Y. Effects of zinc bearing palygorskite supplementation on the growth performance, hepatic mineral content, and antioxidant status of broilers at early age. Asian-Australas. J. Anim. Sci. 2017, 30, 1006–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, F.; Wang, A. Recent researches on antimicrobial nanocomposite and hybrid materials based on sepiolite and palygorskite. Appl. Clay Sci. 2022, 219, 106454. [Google Scholar] [CrossRef]
- Hui, A.; Yang, F.; Yan, R.; Kang, Y.; Wang, A. Palygorskite-Based Organic–Inorganic Hybrid Nanocomposite for Enhanced Antibacterial Activities. Nanomaterials 2021, 11, 3230. [Google Scholar] [CrossRef] [PubMed]
- Urošević, M.; Nikolić, L.; Gajić, I.; Nikolić, V.; Dinić, A.; Miljković, V. Curcumin: Biological Activities and Modern Pharmaceutical Forms. Antibiotics 2022, 11, 135. [Google Scholar] [CrossRef] [PubMed]
- Rathore, S.; Mukim, M.; Sharma, P.; Devi, S.; Nagar, J.C.; Khalid, M. Curcumin: A Review for Health Benefits. Int. J. Res. Rev. 2020, 7, 273–290. [Google Scholar]
- Pandey, A.; Chaturvedi, M.; Mishra, S.; Kumar, P.; Somvanshi, P.; Chaturvedi, R. Reductive metabolites of curcumin and their therapeutic effects. Heliyon 2020, 6, e05469. [Google Scholar] [CrossRef] [PubMed]
- Oglah, M.K.; Mustafa, Y.F.; Bashir, M.K.; Jasim, M.H. Curcumin and Its Derivatives: A Review of Their Biological Activities. Syst. Rev. Pharm. 2020, 11, 472–481. [Google Scholar]
- Raduly, F.M.; Raditoiu, V.; Raditoiu, A.; Purcar, V. Curcumin: Modern applications for a versatile additive. Coatings 2021, 11, 519. [Google Scholar] [CrossRef]
- Raduly, M.F.; Raditoiu, V.; Raditoiu, A.; Wagner, L.E.; Amariutei, V.; Ailiesei Darvaru, G. Facile synthesis of curcumin and curcuminoid-like derivatives at microwaves. Rev. Chim. 2018, 69, 1327–1331. [Google Scholar] [CrossRef]
- Ilnytskyi, J.; Patsahan, T.; Pizio, O. On the properties of the curcumin molecule in water. Exploration of the OPLS—United atom model by molecular dynamics computer simulation. J. Mol. Liq. 2016, 223, 707–715. [Google Scholar] [CrossRef]
- Dearde, J.C. Investigation of the self-association of phenols and anilines by ultraviolet spectroscopy. Can. J. Chem. 1963, 41, 2683–2691. [Google Scholar] [CrossRef] [Green Version]
Element | Si | Al | Fe | Mg | K | Ca | Ti | L.E. |
---|---|---|---|---|---|---|---|---|
Raw (wt%) | 25.79 (±0.48) | 3.65 (±0.21) | 4.19 (±0.09) | 3.7 (±1.2) | 0.48 (±0.02) | 4.02 (±0.07) | 0.63 (±0.05) | 56.74 (±0.9) |
Sample | SBET (m2/g) | Vtotal (cm3/g) | Dmedpore (nm) |
---|---|---|---|
PAL | 117 | 0.327 | 13 |
S1 | 86 | 0.281 | 30 |
S1-CC | 81 | 0.193 | 10 |
S1-CCN | 97 | 0.298 | 13 |
S2 | 36 | 0.319 | 15 |
S2-CC | 40 | 0.167 | 17 |
S2-CCN | 24 | 0.272 | 3 |
Sample | RT–140 °C | 140–285 °C | 285–410 °C | 410–700 °C | Residue | |||
---|---|---|---|---|---|---|---|---|
Wt. Loss | Wt. Loss | Tmax | Wt. Loss | Tmax | Wt. Loss | Tmax | 700 °C | |
(%) | (%) | (°C) | (%) | (°C) | (%) | (°C) | (%) | |
S1 | 5.89 | 1.74 | 248.8 | 7.05 | - | 521.10 | 85.27 | |
S2 | 3.66 | 9.63 | 213.2 | 15.90 | 429.2 | - | 478.30 | 70.76 |
S1-CC | 5.52 | 3.77 | 190.7 | 4.12 | 8.08 | 452.3 | 78.51 | |
S2-CC | 2.82 | 4.27 | 223.2 | 3.63 | 9.55 | 441.2 | 79.73 | |
CC | 1.53 | 27.11 | 271.5 | 15.96 | 333.0 | 7.35 | 48.04 | |
S1-CCN | 5.79 | 1.87 | 197.4 | 2.94 | 279.1 | 10.48 | 400.8 | 78.93 |
S2-CCN | 3.34 | 1.90 | 202.1 | 5.11 | 281.7 | 13.46 | 436.3 | 76.18 |
CCN | 0.23 | 2.44 | 179.7 | 46.07 | 296.9 | 42.86 | 405.1 | 8.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raduly, F.M.; Rădițoiu, V.; Fierăscu, R.C.; Rădițoiu, A.; Nicolae, C.A.; Purcar, V. Influence of Organic-Modified Inorganic Matrices on the Optical Properties of Palygorskite–Curcumin-Type Hybrid Materials. Crystals 2022, 12, 1005. https://doi.org/10.3390/cryst12071005
Raduly FM, Rădițoiu V, Fierăscu RC, Rădițoiu A, Nicolae CA, Purcar V. Influence of Organic-Modified Inorganic Matrices on the Optical Properties of Palygorskite–Curcumin-Type Hybrid Materials. Crystals. 2022; 12(7):1005. https://doi.org/10.3390/cryst12071005
Chicago/Turabian StyleRaduly, Florentina Monica, Valentin Rădițoiu, Radu Claudiu Fierăscu, Alina Rădițoiu, Cristian Andi Nicolae, and Violeta Purcar. 2022. "Influence of Organic-Modified Inorganic Matrices on the Optical Properties of Palygorskite–Curcumin-Type Hybrid Materials" Crystals 12, no. 7: 1005. https://doi.org/10.3390/cryst12071005
APA StyleRaduly, F. M., Rădițoiu, V., Fierăscu, R. C., Rădițoiu, A., Nicolae, C. A., & Purcar, V. (2022). Influence of Organic-Modified Inorganic Matrices on the Optical Properties of Palygorskite–Curcumin-Type Hybrid Materials. Crystals, 12(7), 1005. https://doi.org/10.3390/cryst12071005