Influence of Superlattice Structure on V-Defect Distribution, External Quantum Efficiency and Electroluminescence for Red InGaN Based µLEDs on Silicon
Abstract
:1. Introduction
2. Methods
2.1. MOCVD Growth
2.2. V-Defect Distribution
2.3. Device Processing
2.4. Characterization
3. Results
3.1. V-Pit Distribution
3.2. Electroluminescence and External Quantum Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, K.; Avrutin, V.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H. Micro-LEDs, a Manufacturability Perspective. Appl. Sci. 2019, 9, 1206. [Google Scholar] [CrossRef]
- Wong, M.S.; Hwang, D.; Alhassan, A.I.; Lee, C.; Ley, R.; Nakamura, S.; Denbaars, S. High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition. Optics Express 2018, 16, 21324–21331. [Google Scholar] [CrossRef]
- Langer, T.; Kruse, A.; Ketzer, F.A.; Schwiegel, A.; Hoffmann, L.; Jönen, H.; Bremers, H.; Rossow, U.; Hangleiter, A. Origin of the “green gap”: Increasing nonradiative recombination in indium-rich GaInN/GaN quantum well structures. Phys. Status Solidi (c) 2011, 8, 2170–2172. [Google Scholar] [CrossRef]
- Lynsky, C.; Alhassan, A.I.; Lheureux, G.; Bonef, B.; DenBaars, S.P.; Nakamura, S.; Wu, Y.-R.; Weisbuch, C.; Speck, J.S. Barriers to carrier transport in multiple quantum well nitride-based c-plane green light emitting diodes. Phys. Rev. Mater. 2020, 4, 054604. [Google Scholar] [CrossRef]
- Lynsky, C.; Lheureux, G.; Bonef, B.; Qwah, K.S.; White, R.C.; DenBaars, S.P.; Nakamura, S.; Wu, Y.-R.; Weisbuch, C.; Speck, J.S. Improved Vertical Carrier Transport for Green III-Nitride LEDs Using (In,Ga)N Alloy Quantum Barriers. Phys. Rev. Appl. 2022, 17, 054048. [Google Scholar] [CrossRef]
- Pasayat, S.S.; Ley, R.; Gupta, C.; Wong, M.S.; Lynsky, C.; Wang, Y.; Gordon, M.J.; Nakamura, S.; Denbaars, S.P.; Keller, S.; et al. Color-tunable <10 μm square InGaN micro-LEDs on compliant GaN-on-porous-GaN pseudo-substrates. Appl. Phys. Lett. 2020, 117, 061105. [Google Scholar] [CrossRef]
- White, R.C.; Li, H.; Khoury, M.; Lynsky, C.; Iza, M.; Keller, S.; Sotta, D.; Nakamura, S.; DenBaars, S.P. InGaN-Based microLED Devices Approaching 1% EQE with Red 609 nm Electroluminescence on Semi-Relaxed Substrates. Crystals 2021, 11, 1364. [Google Scholar] [CrossRef]
- Chan, P.; Rienzi, V.; Lim, N.; Chang, H.-M.; Gordon, M.; DenBaars, S.P.; Nakamura, S. Demonstration of relaxed InGaN-based red LEDs grown with high active region temperature. Appl. Phys. Express 2021, 14, 101002. [Google Scholar] [CrossRef]
- Jiang, F.; Zhang, J.; Xu, L.; Ding, J.; Wang, G.; Wu, X.; Wang, X.; Mo, C.; Quan, Z.; Guo, X.; et al. Efficient InGaN-based yellow-light-emitting diodes. Photonics Res. 2019, 7, 144–148. [Google Scholar]
- Quan, Z.; Wang, L.; Zheng, C.; Liu, J.; Jiang, F. Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes. J. Appl. Phys. 2014, 116, 183107. [Google Scholar] [CrossRef]
- Ho, C.-H.; Speck, J.S.; Weisbuch, C.; Wu, Y.-R. Efficiency and Forward Voltage of Blue and Green Lateral LEDs with V-shaped Defects and Random Alloy Fluctuation in Quantum Wells. Phys. Rev. Appl. 2022, 17, 014033. [Google Scholar] [CrossRef]
- Zhang, S.-N.; Zhang, J.; Gao, J.-D.; Wang, X.; Zheng, C.; Zhang, M.; Wu, X.; Xu, L.; Ding, J.; Quan, Z.; et al. Efficient emission of InGaN-based light-emitting diodes: Toward orange and red. Photonics Res. 2020, 8, 1671. [Google Scholar] [CrossRef]
- Lynsky, C.; White, R.C.; Chow, Y.C.; Ho, W.Y.; Nakamura, S.; DenBaars, S.P.; Speck, J.S. Role of V-defect density on the performance of III-nitride green LEDs on sapphire substrates. J. Cryst. Growth 2021, 560-561, 126048. [Google Scholar] [CrossRef]
- Wu, X.H.; Elsass, C.R.; Abare, A.C.; Mack, M.P.; Keller, S.; Petroff, P.M.; DenBaars, S.P.; Speck, J.S.; Rosner, S.J. Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells. Appl. Phys. Lett. 1998, 72, 692–694. [Google Scholar] [CrossRef]
- Tao, X.; Liu, J.; Zhang, J.; Mo, C.; Xu, L.; Ding, J.; Wang, G.; Wang, X.; Wu, X.; Quan, Z.; et al. Performance enhancement of yellow InGaN-based multiple-quantum-well light-emitting diodes grown on Si substrates by optimizing the InGaN/GaN superlattice interlayer. Opt. Mater. Express 2018, 8, 1221–1230. [Google Scholar] [CrossRef]
- Jiang, X.; Zheng, C.; Mo, C.; Wang, X.; Zhang, J.; Quan, Z.; Liu, J.; Jiang, F. Study on the performance of InGaN-based green LED by designing different preparing layers. Opt. Mater. 2019, 89, 505–511. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, X.; Yan, H.; Gao, Y.; Xu, H.; Zhao, J.; Quan, Z.; Gui, C.; Liu, S. The effect of nanometre-scale V-pits on electronic and optical properties and efficiency droop of GaN-based green light-emitting diodes. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef]
- Quan, Z.J.; Liu, J.L.; Fang, F.; Wang, G.X.; Jiang, F.Y. Effect of V-shaped Pit area ratio on quantum efficiency of blue InGaN/GaN multiple-quantum well light-emitting diodes. Opt. Quantum Electron. 2016, 48, 195. [Google Scholar] [CrossRef]
- Wong, M.S.; Lee, C.; Myers, D.J.; Hwang, D.; Kearns, J.A.; Li, T.; Speck, J.S.; Nakamura, S.; Denbaars, S. Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation. Appl. Phys. Express 2019, 12, 097004. [Google Scholar] [CrossRef]
- Hwang, D.; Mughal, A.; Pynn, C.D.; Nakamura, S.; Denbaars, S. Sustained high external quantum efficiency in ultrasmall blue III–nitride micro-LEDs. Appl. Phys. Express 2017, 10, 032101. [Google Scholar] [CrossRef]
- Qi, W.; Zhang, J.; Mo, C.; Wang, X.; Wu, X.; Quan, Z.; Wang, G.; Pan, S.; Fang, F.; Liu, J.; et al. Effects of thickness ratio of InGaN to GaN in superlattice strain relief layer on the optoelectrical properties of InGaN-based green LEDs grown on Si substrates. J. Appl. Phys. 2017, 122, 084504. [Google Scholar] [CrossRef]
- Kusch, G.; Comish, E.J.; Loeto, K.; Hammersley, S.; Kappers, M.J.; Dawson, P.; Oliver, R.A.; Massabuau, F.C.-P. Carrier dynamics at trench defects in InGaN/GaN quantum wells revealed by time-resolved cathodoluminescence. Nanoscale 2021, 14, 402–409. [Google Scholar] [CrossRef]
- Wu, X.; Liu, J.; Quan, Z.; Xiong, C.; Zheng, C.; Zhang, J.; Mao, Q.; Jiang, F. Electroluminescence from the sidewall quantum wells in the V-shaped pits of InGaN light emitting diodes. Appl. Phys. Lett. 2014, 104, 221101. [Google Scholar] [CrossRef]
- Tao, T.; Zhi, T.; Liu, B.; Li, Y.; Zhuang, Z.; Xie, Z.; Chen, D.; Chen, P.; Zhang, R.; Zheng, Y. Spatially localised luminescence emission properties induced by formation of ring-shaped quasi-potential trap around V-pits in InGaN epi-layers. Phys. Status Solidi (a) 2014, 211, 2823–2827. [Google Scholar] [CrossRef]
- Tao, X.-X.; Mo, C.-L.; Liu, J.-L.; Zhang, J.-L.; Wang, X.-L.; Wu, X.-M.; Xu, L.-Q.; Ding, J.; Wang, G.-X.; Jiang, F.-Y. Electroluminescence from the InGaN/GaN Superlattices Interlayer of Yellow LEDs with Large V-Pits Grown on Si (111). Chin. Phys. Lett. 2018, 35. [Google Scholar] [CrossRef]
- Olivier, F.; Tirano, S.; Dupré, L.; Aventurier, B.; Largeron, C.; Templier, F. Influence of size-reduction on the performances of GaN-based micro-LEDs for display application. J. Lumin. 2017, 191, 112–116. [Google Scholar] [CrossRef]
- Myers, D.J.; Espenlaub, A.C.; Gelzinyte, K.; Young, E.C.; Martinelli, L.; Peretti, J.; Weisbuch, C.; Speck, J.S. Evidence for trap-assisted Auger recombination in MBE grown InGaN quantum wells by electron emission spectroscopy. Appl. Phys. Lett. 2020, 116, 091102. [Google Scholar] [CrossRef]
Sample | Density of V-Defects | % Formed in SL | Density of V-Defects Formed in SL | Average Diameter (nm) |
---|---|---|---|---|
A | 6.38 × 108 | 47.4% | 3.02 × 108 | 129.1 |
B | 5.39 × 108 | 48.5% | 2.61 × 108 | 142.9 |
C | 4.35 × 108 | 58.2% | 2.53 × 108 | 171.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ewing, J.; Lynsky, C.; Zhang, J.; Shapturenka, P.; Wong, M.; Smith, J.; Iza, M.; Speck, J.S.; DenBaars, S.P. Influence of Superlattice Structure on V-Defect Distribution, External Quantum Efficiency and Electroluminescence for Red InGaN Based µLEDs on Silicon. Crystals 2022, 12, 1216. https://doi.org/10.3390/cryst12091216
Ewing J, Lynsky C, Zhang J, Shapturenka P, Wong M, Smith J, Iza M, Speck JS, DenBaars SP. Influence of Superlattice Structure on V-Defect Distribution, External Quantum Efficiency and Electroluminescence for Red InGaN Based µLEDs on Silicon. Crystals. 2022; 12(9):1216. https://doi.org/10.3390/cryst12091216
Chicago/Turabian StyleEwing, Jacob, Cheyenne Lynsky, Jiaao Zhang, Pavel Shapturenka, Matthew Wong, Jordan Smith, Michael Iza, James S. Speck, and Stephen P. DenBaars. 2022. "Influence of Superlattice Structure on V-Defect Distribution, External Quantum Efficiency and Electroluminescence for Red InGaN Based µLEDs on Silicon" Crystals 12, no. 9: 1216. https://doi.org/10.3390/cryst12091216
APA StyleEwing, J., Lynsky, C., Zhang, J., Shapturenka, P., Wong, M., Smith, J., Iza, M., Speck, J. S., & DenBaars, S. P. (2022). Influence of Superlattice Structure on V-Defect Distribution, External Quantum Efficiency and Electroluminescence for Red InGaN Based µLEDs on Silicon. Crystals, 12(9), 1216. https://doi.org/10.3390/cryst12091216